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● Possibly sparse result

● Multiple pruning criteria and schedules

(curvature, magnitude, iterative…)
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Lottery ticket hypothesis (LTH) [FrankleCarbin18]

The smaller architecture can solve the problem… often with better generalization!

What characterizes these minima that are missed by the FCN training?

[FrankleCarbin, 
arXiv:1803.03635,
IMP of small CNNs
on CIFAR10]



Pruning a simple FCN on ImageNet32
● ImageNet data (1.2M images, 1k classes) scaled to 32x32

● 3 hidden layers [3072:(1024x3):1000], ReLU, cross-entropy

● Iterative Magnitude Pruning (IMP), 30% per iteration
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Pruning a simple FCN on ImageNet32
● ImageNet data (1.2M images, 1k classes) scaled to 32x32

● 3 hidden layers [3072:(1024x3):1000], ReLU, cross-entropy

● Iterative Magnitude Pruning (IMP), 30% per iteration

What is the connectivity 
of this network?
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First layer: locality
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First layer: locality
Relative position of pixels connected to the same hidden node.

Dense Network

Pruned Network

Same color channel Different color channels



First layer: masks are structured
Most connected nodes show local and highly structured patterns.



First layer masks: translational invariance

Similar patterns at different locations



First layer masks: translational invariance

Similar weights



First layer masks: translational invariance

Class independent response



Second layer: aggregated features
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Decreasing the size of the dataset

Connectivity 
distribution 
becomes 
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Locality
is lost

Decreasing data, IMP
is less effective
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Conclusions
● IMP on images leads to masks that are

○ local

○ structured

○ hierarchical

● The structure is related to success of the task

● IMP can help uncover architectural bias



Thank you!


