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Gaussian Process

Having a set of data, we assume that yi = f (xi) + ϵi , with f (·) a latent
function and ϵi Gaussian noise with variance σ2, i.e., ϵi ∼ N (0, σ2).

A Gaussian process (GP) can be used as a prior for f (·).

Then, the posterior of f at a new point x⋆ is Gaussian with mean and
variance

µ(x⋆) = k(x⋆)T(K+ σ2I)−1y ,

σ2(x⋆) = k⋆ − k(x⋆)T(K+ σ2I)−1k(x⋆) ,

The cost of this approach is O(N3) since it needs the inversion of K, a
N × N matrix. This makes GPs unsuitable for large data sets.
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Variational Sparse GPs

The most popular methods for Sparse GPs are using a new set of
M ≪ N points , called the inducing points.

We focus on a widely used variational inference (VI) approach to
approximate the posterior for f to improve the cost of Gaussian
process.
In VI, the goal is to find an approximate posterior for f and u, q(f,u),
that resembles as much as possible the true posterior p(f,u|y).
Then, the evidence lower bound (or ELBO) is:

L =
∑N

i=1 Eq(f)[log p(yi |fi)]− KL[q(u)|p(u)] ,

The expressive power of the VSGPs depends on the number of inducing
points M and their correct location on the input space.
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Input Dependent SGPs

we consider a meta-point x̃ that is used to determine the inducing
points Z and the corresponding u.

Using posterior’s factorization and Jensen’s inequality we obtain the
lower bound after some simplifications:

L = Eq

[
log

p(y|f)p(f|u)p(u|x̃)p(x̃)
q(f,u, x̃)

]
= Eq

[
log

p(y|f)����p(f|u)p(u|x̃)���p(x̃)

����p(f|u)q(u|x̃)���p(x̃)

]
=

∑N
i=1

∫
p(x̃)

[
p(fi |u)q(u|x̃) log p(yi |fi )dfdu

− 1
NKL[q(u|x̃)|p(u|x̃)]

]
d x̃ .
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Input Dependent SGPs

Assume that p(x̃) is an implicit distribution. We can draw samples
from it and approximate the expectation w.r.t p(x̃). Thus, for a sample
x̃s from p(x̃), ELBO is approximated as

L ≈
∑N

i=1

[
Ep(fi |u)q(u|x̃s)[log p(yi |fi )]

− 1
NKL[q(u|x̃s)|p(u|x̃s)]

]
.

Consider now that we use mini-batch-based training for optimization,
and we set x̃s = xi .
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Input Dependent SGPs (Amortization)
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IDSGPs (Prediction)

The predictive distribution for f (x⋆) is Gaussian with mean and variance:

m⋆ = kx⋆,ZK
−1
Z m ,

s⋆ = k⋆ + kx⋆,ZK
−1
Z (S−KZ)K

−1
Z kTx⋆,Z .

Given this distribution for f (x⋆), the probability distribution for y⋆ can be
computed in closed-form in regression problems and with 1-dimensional
quadrature in binary classification.
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IDSGPs (Experiments)
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IDSGPs (Experiments)
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IDSGPs (Large Scale)

IDSGP performs best on each dataset. We believe this due to using a
smaller number of inducing points, and also because of the extra flexibility
of the NN that can specify an input-dependent location of the inducing
points.
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IDSGPs (Joint Predictive Covariances)

Increasing size of the mini-batch used for training and testing. Moreover, in
the case of SWSGP and IDSGP, we show results for an increasing number
of neighbors H and inducing points M.
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These results confirm that IDSGP can provide accurate joint predictive
distributions.
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Conclusion

IDSGP can improve the training time and the flexibility of sparse GP
approximations.

IDSGP keeps intact the GP prior on the latent function values
associated to the training points.

IDSGP uses a deep neural network (DNN) to output specific inducing
points for each point

The extra flexibility provided by the DNN allows to significantly reduce
the number M of inducing points used in IDSGP.

The scalability of IDSGP is also illustrated on massive datasets of up
to 1 billion points.
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Thank You!
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