

Smoothed Adaptive Weighting for Imbalanced Semi-Supervised Learning: Improve Reliability Against Unknown Distribution Data

Zhengfeng Lai¹, Chao Wang¹, Henrry Gunawan¹, Sen-Ching Cheung², Chen-Nee Chuah¹

University of California, Davis¹ University of Kentucky²

Imbalanced Semi-supervised Learning (SSL)

ICML
International Conference
On Machine Learning

- SSL faces performance degradation when the unlabeled dataset is imbalanced
 - Designed with the assumption that both labeled set (L) and unlabeled set (U) are balanced
 - Pseudo labels during the self-training process can be biased towards the majority classes
- Recent class-imbalanced SSL^[1,2]
 - Explicitly assume that *U* share similar distributions to *L*
 - In real-world scenarios, <u>U may have different distributions</u> from <u>L</u>
 - Can we relieve such assumptions?

An example of imbalance dataset based on CIFAR-10

FixMatch's performance on the minority classes

^[1] Kim, Jaehyung, et al. "Distribution aligning refinery of pseudo-label for imbalanced semi-supervised learning." NeurIPS 2020. [2] Wei, Chen, et al. "Crest: A class-rebalancing self-training framework for imbalanced semi-supervised learning." CVPR 2021.

Main Contributions

- Verify the necessity and benefits of smoothed weights in the consistency loss
 - Uniform weighting? Inverse class-frequency weighting?
 - Smoothing weighting?
- SAW: Smoothed Adaptive Weighting
 - Estimate the distribution: does not assume that U has the same distribution as L
 - Effective number of samples^[2] is estimated based on pseudo labels
 - Calculate the smoothed weights by smoothing weighting schemes
- Evaluate the proposed methods under various scenarios
 - Hold-out tests are of various distributions besides balanced distribution reported in prior works

Why do we need smoothed weighting?

- Uniform weighting -> Ignore the class imbalance problem
- Inverse class-frequency weighting -> May erroneously overemphasize the weaker classes (overfitting)^[2]

FixMatch on CIFAR-10 with the weighting scheme^[1] when imbalance ratio is 100

$$w_k \propto 1/E_k$$
, where $E_k = (1-\beta^{n_k})/(1-\beta)$

[1] Cui, Yin, et al. "Class-balanced loss based on effective number of samples." CVPR 2019.

[2] Tang, Kaihua, et al. "Long-tailed classification by keeping the good and removing the bad momentum causal effect." NeurIPS 2020.

$$\beta = (N-1)/N$$

SAW: Smoothed Adaptive Weighting Scheme

Weighted consistency loss: $\mathcal{L}_{cw}(x; w, \theta) := \sum_{k=1}^{C} w_k \cdot p(x; \theta)_k \cdot \log(h(\mathtt{pertub}(x); \theta)_k)$

[1] Cui, Yin, et al. "Class-balanced loss based on effective number of samples." CVPR 2019.

Experimental Design

- Training sets scenarios
 - Both *L* and *U*: long-tailed distributions
 - lacksquare S1) U has the same distributions as L for varying imbalanced ratios
 - lacksquare S2) U has different distributions as L for varying imbalanced ratios
- Hold-out test sets scenarios
 - a) Balanced distributions
 - b) Reversed distributions
 - o c) Same distributions as *L* in the training set
- A real-world medical imaging application
 - Grey/white matter segmentation in gigapixel images^[1]

[1] Lai, Zhengfeng, et al. "Joint Semi-supervised and Active Learning for Segmentation of Gigapixel Pathology Images with Cost-Effective Labeling." ICCV Workshop 2021.

- Measuring metric: bACC (balanced accuracy) and GM (geometric mean)
- Imbalanced ratios (γ): for the labeled set, it is set as 100.
- Two recent state-of-the-art imbalanced SSL algorithms
 - CReST (assume *U* and *L* have the same distributions)
 - DARP (use the confusion matrix on L to estimate the distribution of U)

Algorithm	$\gamma_u=1$	$\gamma_u = 50$	$\gamma_u = 150$
ReMixMatch (Berthelot et al., 2020) ReMixMatch* (Berthelot et al., 2020) ReMixMatch* + DARP (Kim et al., 2020) ReMixMatch* + CReST (Wei et al., 2021) ReMixMatch* + SAW	48.3±0.14 / 19.5±0.85	75.1±0.43 / 71.9±0.77	72.5±0.10 / 68.2±0.32
	85.0±1.35 / 84.3±1.55	77.0±0.12 / 74.7±0.04	72.8±0.10 / 68.8±0.21
	89.7 ±0.15 / 89.4 ±0.17	77.4±0.22 / 75.0±0.25	73.2±0.11 / 69.2±0.31
	45.9±1.27 / 20.1±1.99	70.2±0.45 / 65.8±0.71	65.4±0.34 / 62.9±0.15
	88.3±0.15 / 88.9±0.10	80.3 ±0.36 / 79.6 ±0.40	74.0 ±0.94 / 72.4 ±0.94
FixMatch (Sohn et al., 2020) FixMatch + DARP (Kim et al., 2020) FixMatch + CReST (Wei et al., 2021) FixMatch + SAW	68.9±1.95 / 42.8±8.11	73.9±0.25 / 70.5±0.52	69.6±0.60 / 62.6±1.11
	85.4 ±0.55 / 85.0 ±0.65	77.3±0.17 / 75.5±0.21	72.9±0.24 / 69.5±0.18
	60.2±1.34 / 35.9±2.50	65.8±0.78 / 67.1±0.84	60.1±1.44 / 51.4±1.68
	83.9±0.44 / 83.3±0.47	81.5 ±2.25 / 80.9 ±2.30	76.8 ±0.31 / 75.4 ±0.37

S2b): *U* has a *different* distribution from *L* and the test set is *imbalanced* and of *reversed* distributions. (CIFAR-10)

Algorithm	$\gamma = 50$	$\gamma=100$	$\gamma = 150$
ReMixMatch (Berthelot et al., 2020)	71.0±0.55 / 83.5±0.29	54.7±0.51 / 74.4±0.47	$41.5\pm1.69 / 66.4\pm1.22$
ReMixMatch + DARP (Kim et al., 2020)	66.9±0.75 / 80.5±0.46	49.7±1.55 / 70.5±0.90	$35.8\pm1.81 / 60.9\pm2.42$
ReMixMatch + CReST (Wei et al., 2021)	64.3±0.25 / 75.7±0.34	51.2±0.92 / 72.1±0.85	$39.2\pm1.46 / 65.8\pm1.88$
ReMixMatch + SAW	86.3 ±0.61 / 86.1 ±0.64	77.0 ±0.59 / 76.0 ±0.42	71.5 ±0.30 / 68.9 ±0.26
FixMatch (Sohn et al., 2020) FixMatch + DARP (Kim et al., 2020) FixMatch + CReST (Wei et al., 2021) FixMatch + SAW	70.5±0.26 / 82.2±0.31	51.0±1.65 / 71.5±1.24	38.5±1.15 / 63.4±0.31
	72.2±0.62 / 82.8±0.17	57.6±0.36 / 74.8±0.48	46.5±1.26 / 68.1±0.10
	69.4±0.35 / 80.1±0.41	52.4±0.32 / 70.3±0.28	42.9±1.45 / 67.4±1.07
	78.7 ±0.77 / 84.2 ±0.36	64.3 ±1.96 / 76.4 ±0.88	57.5 ±2.83 / 70.5 ±1.50

International Conference

On Machine Learning

Results

^{*}More results on other scenarios can be found in the main paper.

Discussion & Future Work

- SAW can complement consistency-based SSL algorithms
 - We verified the feasibility of adding weights to the consistency loss
 - We investigated the necessity and benefits of smoothed weights
 - SAW does not require the unlabeled data to have similar distributions as the labeled data
- Limitation & Future Work
 - Still assume *U* and *L* contain the same classes
 - Study more various scenarios in the imbalanced setting
 - Investigate sophisticated ways of estimating the distribution in the unlabeled data

