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Backgrounds

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the
original network after training for at most the same number of iterations.
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What is Double-Win Lottery Tickets?

A located subnetwork from a pre-trained
model can be independently transferred
on diverse downstream tasks, to reach
BOTH the same standard and robust
generalization, under BOTH standard
and adversarial training regimes.
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Findings

Using IMP, we find double-win tickets broadly across diverse downstream datasets
and at non-trivial sparsity levels 79.03% ~ 89.26% and 83.22% ~ 96.48% sparsity,
using the fast adversarial (FAT) and adversarial (AT) pre-training. In general,
subnetworks located from the AT pre-trained model have superior performance
than FAT and standard pre-training.

We further demonstrate the intriguing property of double-win tickets in the
data-limited transfer settings (e.g., 10%, 1%). In this specific situation, FAT can
surprisingly find higher-quality subnetworks with small sparsity while AT overtakes
in a larger sparsity range.

We show that adopting standard or adversarial training in the process of IMP makes
no significant difference for the transferability of identified subnetworks on
downstream tasks.



Drawing Double-Win Lottery Tickets from Robust Pre-training
[Q1] Do double-win lottery tickets exist?
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Drawing Double-Win Lottery Tickets from Robust Pre-training

[Q2] Do training regimes on source domain affect the located subnetworks?
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