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Facebook helps you connect and share with
the people in your life.
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« Tensor decomposition estimates a set of

latent factors for each node in each page . . .
mode of the tensor | ’(11 s by B)

« Most current methods use priors that f P_]_)= Y(i1, b, &)
assume the proportion of observed user P :

entries is constant 9

« Often only a small proportion of entries ftom N
are observed i Iof =
o A recent work (Tillinghast, Zhe 2021) Y . EE

introduced a Sparse model, NEST, but it
is inflexible Latent factors of objects in each mode
« The goal of this work is to create a more

flexible sparse tensor model for tensor
decomposition
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« Represent observed entry locations as
points in Rd Observed Entry

e Location, O, encodes intrinsic properties

e w encodes how nodes interact
(sociabilities)

« For sparsity, specify non-parametric priors
over (O,w)

e NEST only allows for w, to be 1
dimensional using a Dirichlet Process

e Our goal is to have a flexible model where
the dimension the locations and
sociabilities can be chosen as desired
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e Use use coupling to sample
multiple sociabilities that share 5
underlying locations | I ‘

e For each mode of the tensor
sample, a gamma process as the
base measure for the mode, then
sample kK gamma process ‘

 This leads to a flexible, provably
sparse tensor model N 0_20J
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Algorithm

o With finite data, the tensor model can be
normalized to a Poisson point process
where the rate measure is the product of
hierarchical Dirichlet processes

« For inference we use sample partitions,
density transformations, and random
Fourier features to develop a stochastic
variational estimation algorithm
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Results

e The additional
flexibility given by our
HIP prior results in
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Thank You!



