

Bayesian Continuous-Time Tucker Decomposition

Shikai Fang, Akil Narayan, Robert M. Kirby, Shandian Zhe

Presenter: Shikai Fang

School of computing, The University of Utah

For ICML 2022

Outline

- 1. Background
- 2. Motivation
- 3. Dynamic Tucker-Core via SDE
- 4. Message-Passing Inference: SDE Discretization+ Conditional Moment Matching
- 5. Experiments on Real-world Data

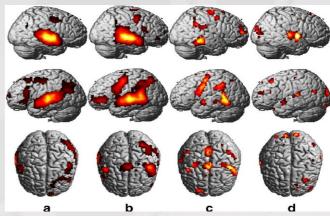
Tensor Data: Widely Used High-Order Data Structures to Represent Interactions of Multiple Objects/Entities

(user, movie, episode)

(user, item, online-store)

(user, advertisement, page-section)

(user, user, location, message-type)



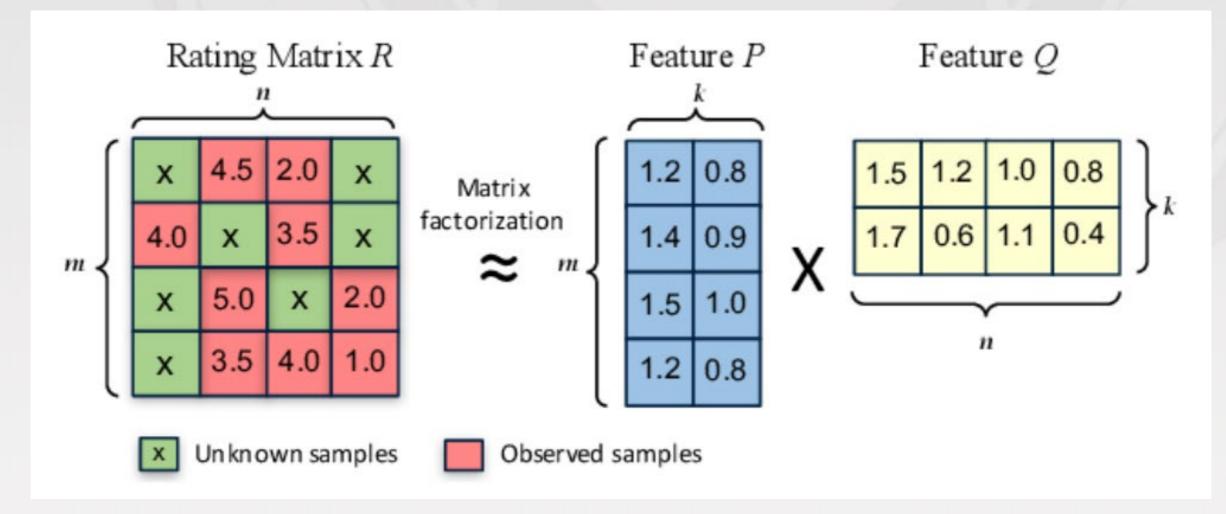
(subject, voxel, electrode)

(patient, gene, condition)

Tensor Decomposition: estimate latent factors to reconstruct tensor with observed entries

•Simple case:

Collaborative Filtering (Matrix Factorization)



4

Tensor Decomposition: estimate latent factors to reconstruct tensor with observed entries

•Simple case:

Collaborative Filtering (Matrix Factorization)

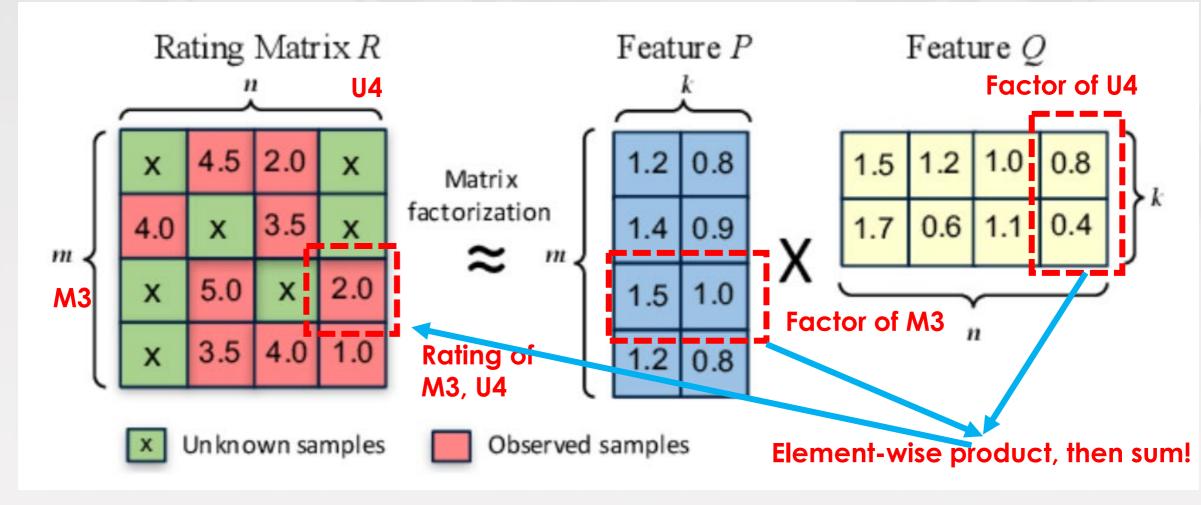


Image from https://www.slideshare.net/hontolab/matrix-factorization-192159058

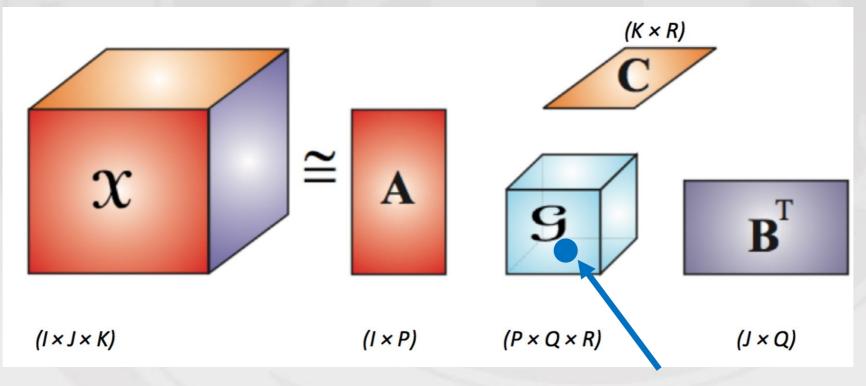
5

Tucker Decomposition

• 2-D matrix => N-D tensor

• Element-wise interaction => all possible interactions

Tucker Decomposition



One interaction weight

Element-wise form for a K-mode tensor Y:

Image from https://iksinc.online/2018/05/02/understanding-tensors-and-tensor-decompositions-part-3/.

Challenge: Temporal info in Tensor

What about each entry is time-dependent?

Straightforward Solution:

Drop time or

 $X_{ijk}(t)$

 Augment tensor with time-step mode

$(I \times J \times K)$

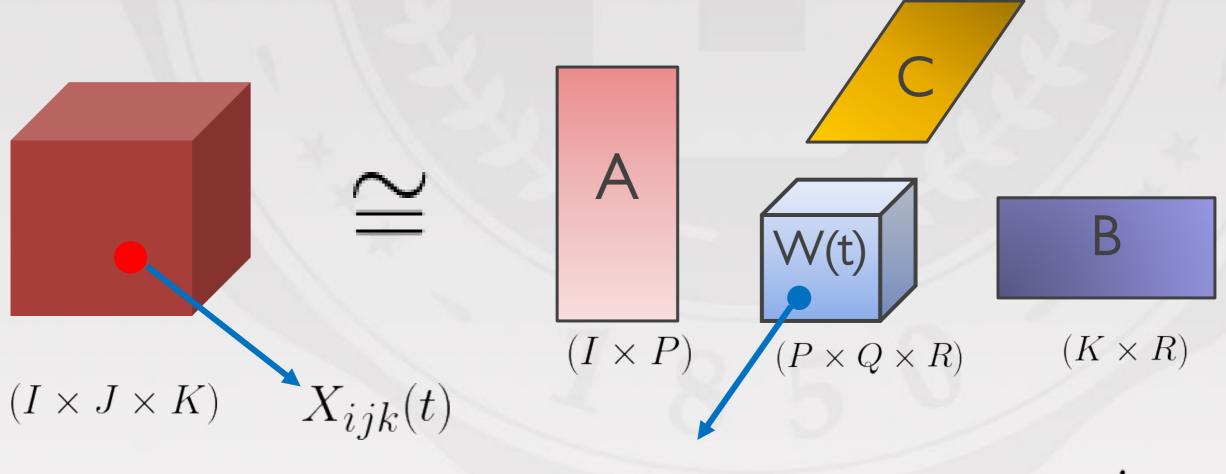
Problem:

- 1. Too Sparse
- 2. Ignore the temporary continuity

 $(I \times J \times K \times T)$

t2

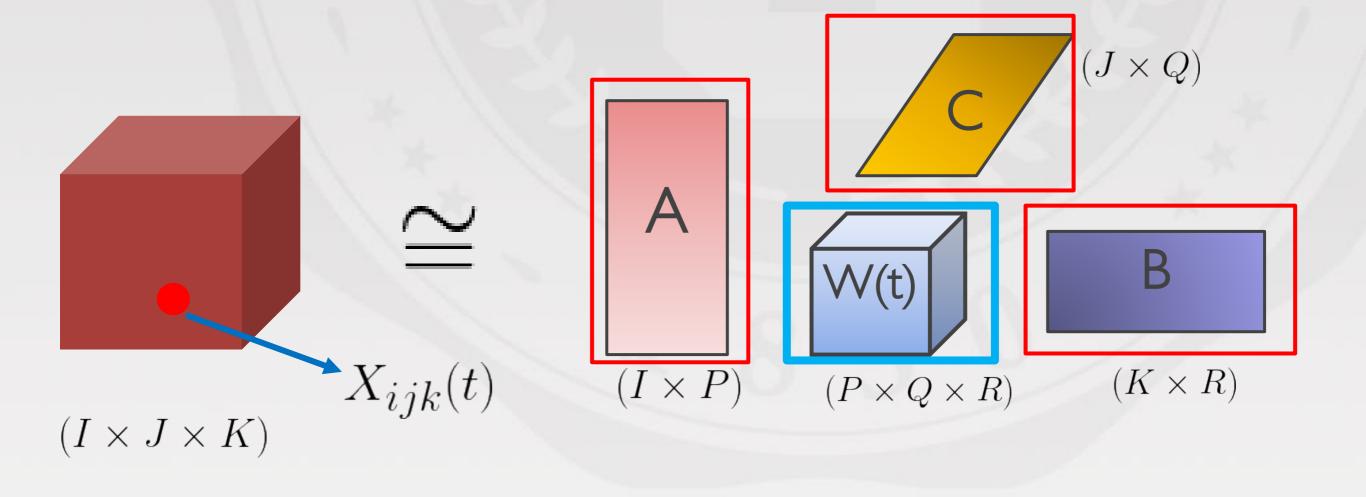
Our Solution: Modeling <u>Dynamic Tucker Core</u> by <u>Temporal Gaussian Processes</u>



 $W_{pqr}(t) \sim GP(0, k(t, t'))$

 $(J \times Q)$

High-level Motivation: <u>Decouple</u> the representation learning of factors and the capture of dynamic pattern



Joint Probability:

$$\begin{array}{l} p\left(\mathcal{U}, \left\{\mathbf{w}_{\mathbf{r}}\right\}_{\mathbf{r}}, \tau, \mathbf{y}\right) = \\ \operatorname{Gam}\left(\tau \mid b_{0}, c_{0}\right) \prod_{k=1}^{K} \prod_{j=1}^{d_{k}} \mathcal{N}\left(\mathbf{u}_{j}^{k} \mid \mathbf{0}, \mathbf{I}\right) \times \prod_{\mathbf{r}=(1,...,1)}^{R_{1},...,R_{K}} \mathcal{N}\left(\mathbf{w}_{\mathbf{r}} \mid \mathbf{0}, \mathbf{K}_{\mathbf{r}}\right) \times \end{array}$$

Priors of factors and noise

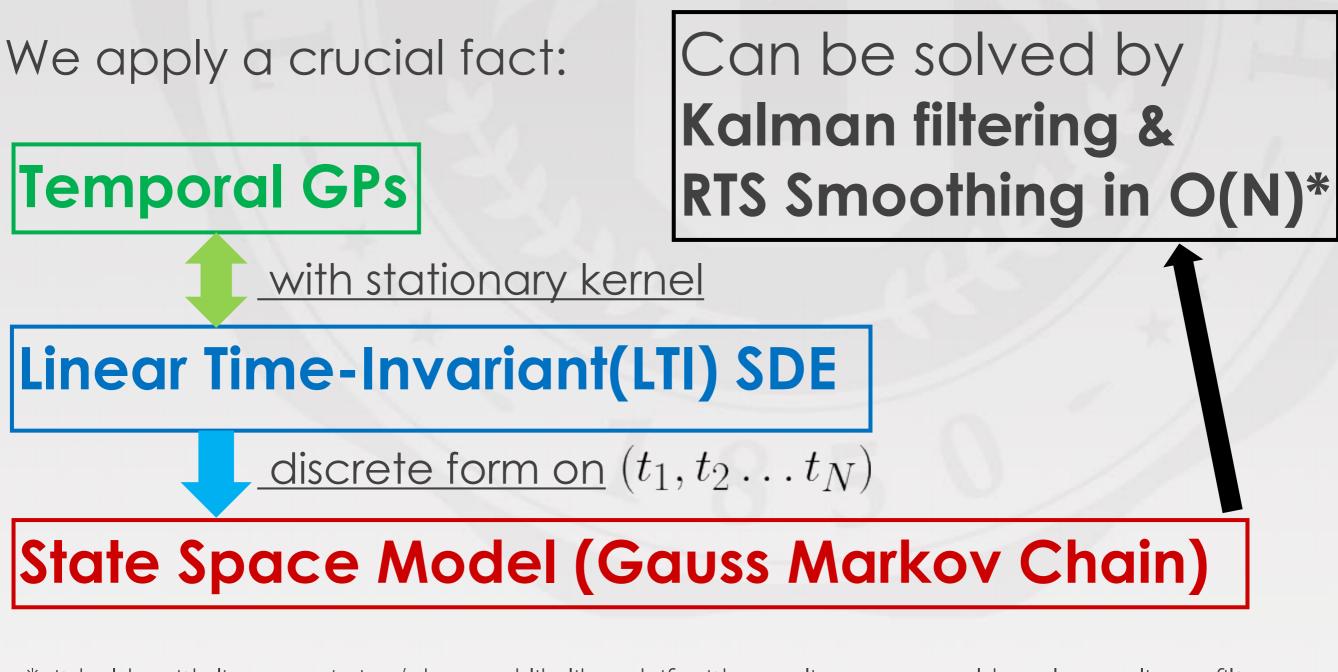
Temporal GPs on Tucker Core

$$\prod_{n=1}^{N} \mathcal{N}\left(y_n \mid \operatorname{vec}\left(\mathcal{W}\left(t_n\right)\right)^{\top} \left(\mathbf{u}_{i_{n_1}}^1 \otimes \ldots \otimes \mathbf{u}_{i_{n_K}}^K\right), \tau^{-1}\right)$$

Gaussian Likelihood

Computational challenge: O(N^3) cost of full GPs

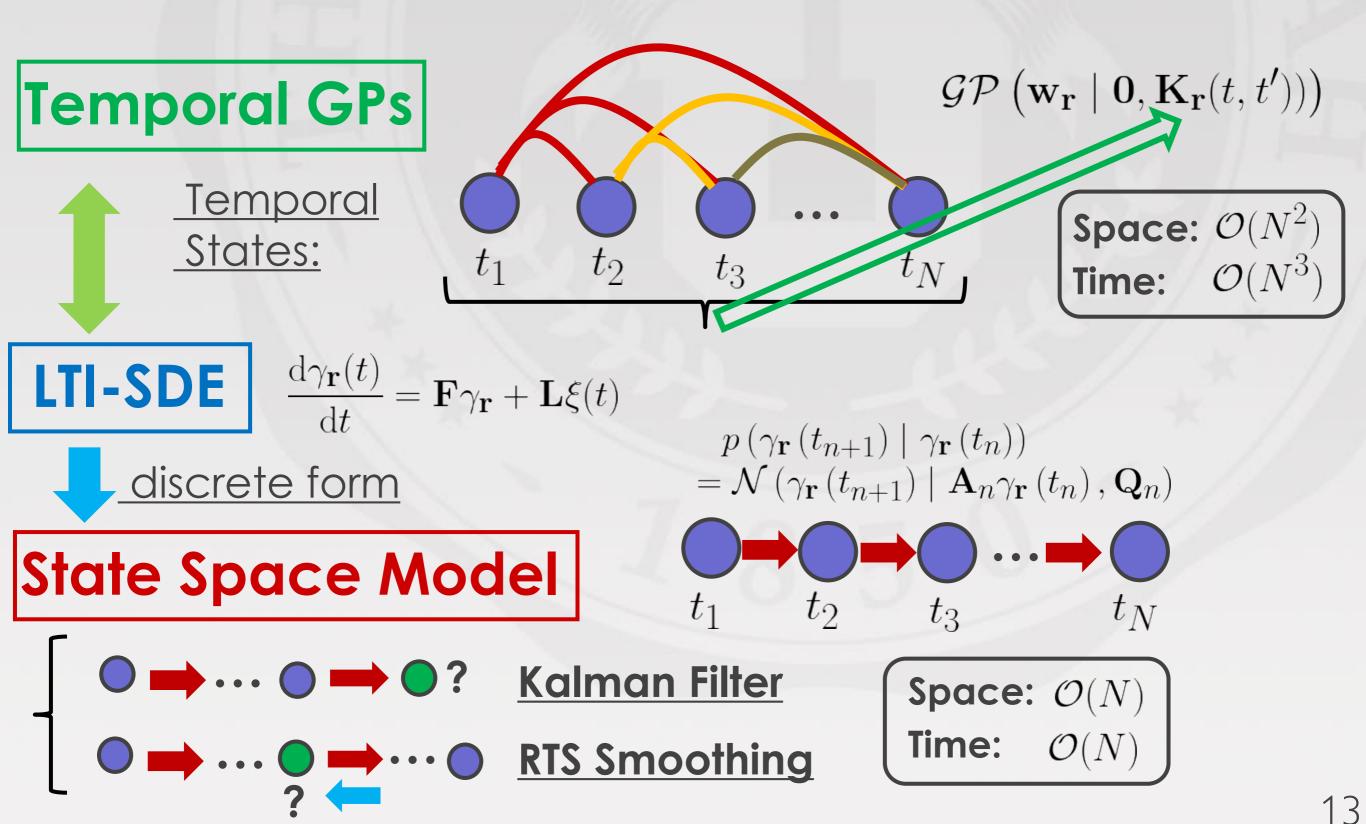
To avoid low-rank/sparse approx. (low quality), but enjoy linear-cost inference of full GPs,

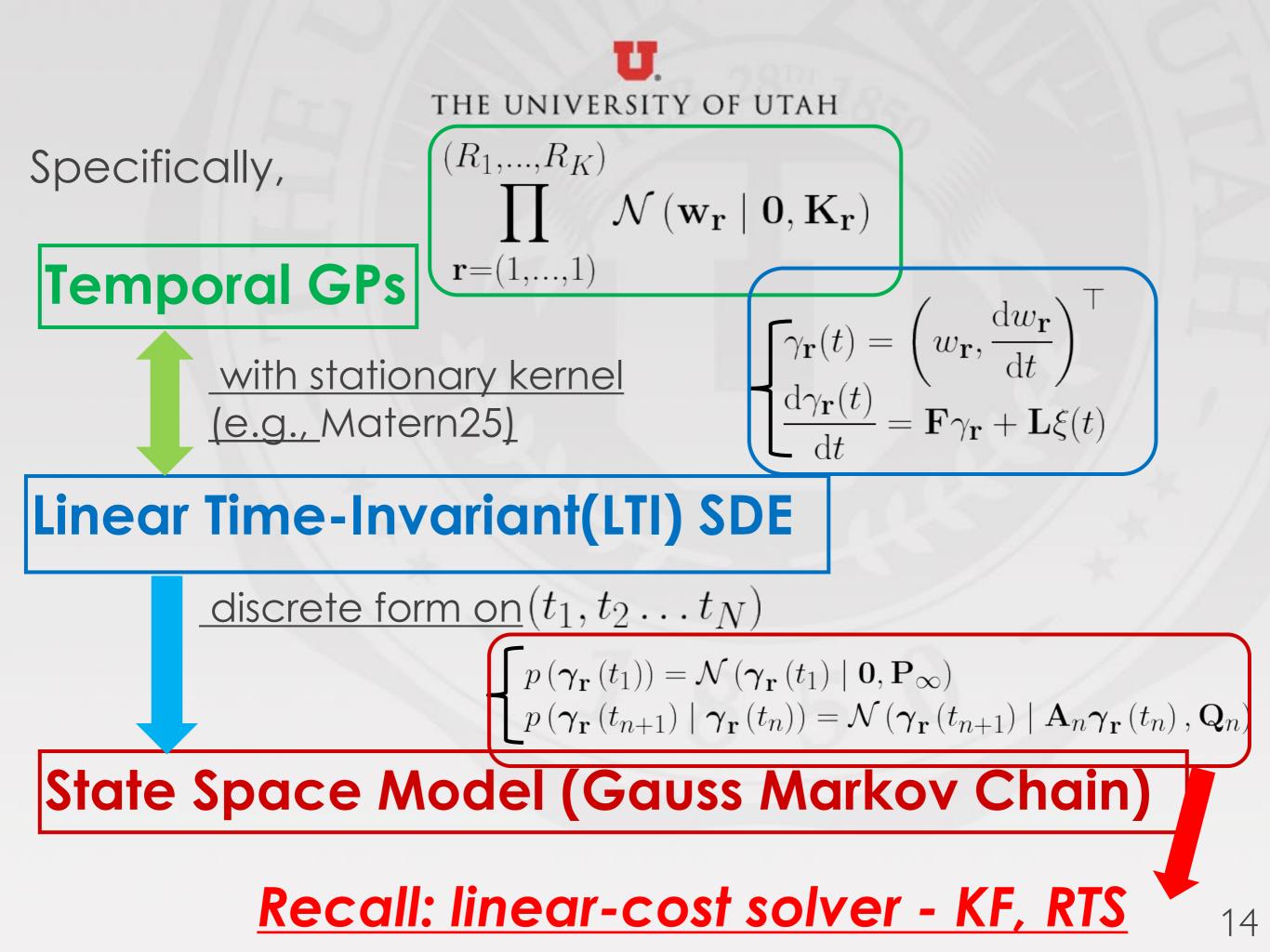


*: it holds with linear emission/observed likelihood, if with non-linear, we could apply non-linear filter and smoothing

12

Illustration of computation cost:





Reformulate Tucker core with State Space Priors

$$p(\bar{\gamma}_1) \prod_{n=1}^{N-1} p(\bar{\gamma}_{n+1} \mid \bar{\gamma}_n)$$

We post Gaussian-Gamma Approx. to fit each data-llk $\mathcal{N}\left(y_n \mid (\mathbf{H}\bar{\gamma}_n)^\top \left(\mathbf{u}_{i_{n_1}}^1 \otimes \ldots \otimes \mathbf{u}_{i_nK}^K\right), \tau^{-1}\right) \approx$ $Z_n \prod_{k=1}^K \mathcal{N}\left(\mathbf{u}_{i_{n_k}}^k \mid \mathbf{m}_{i_{n_k}}^{k,n}, \mathbf{V}_{i_{n_k}}^{k,n}\right) \cdot \operatorname{Gam}\left(\tau \mid b_n, c_n\right) \text{ Approx. Msg of Factors & noise}$ $\times \mathcal{N}\left(\mathbf{H}\bar{\gamma}_n \mid \boldsymbol{\beta}_n, \mathbf{S}_n\right) \text{ Approx. Msg of SDE states} \text{ /Tucker core}$

Substitute these into joint prob.

The proposed approx. posterior is:

F

$$q\left(\mathcal{U}, \{\bar{\gamma}_{n}\}, \tau\right) \propto \prod_{k=1}^{K} \prod_{j=1}^{d_{k}} \mathcal{N}\left(\mathbf{u}_{j}^{k} \mid \mathbf{0}, \mathbf{I}\right) \operatorname{Gam}\left(\tau \mid b_{0}, c_{0}\right)$$
Standard moment match? Infeasible!
$$\prod_{n=1}^{N} \prod_{k=1}^{K} \mathcal{N}\left(\mathbf{u}_{i_{n_{k}}}^{k} \mid \mathbf{m}_{i_{n_{k}}}^{k,n}, \mathbf{V}_{i_{n_{k}}}^{k,n}\right) \operatorname{Gam}\left(\tau \mid b_{n}, c_{n}\right)$$

$$p\left(\bar{\gamma}_{1}\right) \mathcal{N}\left(\mathbf{H}\bar{\gamma}_{1} \mid \boldsymbol{\beta}_{1}, \mathbf{S}_{1}\right) \prod_{n=1}^{N-1} p\left(\bar{\gamma}_{n+1} \mid \bar{\gamma}_{n}\right) \mathcal{N}\left(\mathbf{H}\bar{\gamma}_{n} \mid \boldsymbol{\beta}_{n}, \mathbf{S}_{n}\right)$$
SDE states: Solve by KF and RTS
Apply conditional moment matching and delta method!

Conditional Moment Match

$$\mathbb{E}_{\widetilde{p}}[\phi(\boldsymbol{\eta}_n)] = \mathbb{E}_{\widetilde{p}(\Theta_{\backslash \eta_n})} \left[\mathbb{E}_{\widetilde{p}(\boldsymbol{\eta}_n | \Theta_{\backslash \eta_n})} \left[\phi(\boldsymbol{\eta}) \mid \Theta_{\backslash \boldsymbol{\eta}_n} \right] \right]$$

• Delta method:

$$\mathbb{E}_{q\left(\Theta_{\backslash \eta_{n}}\right)}\left[\boldsymbol{\rho}_{n}\right] \approx \rho_{n}\left(\mathbb{E}_{q}\left[\boldsymbol{\Theta}_{\backslash \boldsymbol{\eta}_{n}}\right]\right)$$

Enable **tractable moment matching** to update approx. probability terms under Expectation Propagation(EP) framework

Algorithm 1 BCTT

Input: $\mathcal{D} = \{(\mathbf{i}_1, t_1, y_1), \dots, (\mathbf{i}_N, t_N, y_N)\}, \text{ kernel hyper-parameters } l, \sigma^2$

Initialize approximation terms in (10) for each likelihood. **repeat**

Run KF and RTS smoothing to compute each $q(\overline{\gamma}_n)$ for n = 1 to N in parallel do

Simultaneously update $\mathcal{N}(\mathbf{H}\overline{\gamma}_{n}|\boldsymbol{\beta}_{n}, \mathbf{S}_{n})$, $Gam(\tau|b_{n}, c_{n})$ and $\left\{\mathcal{N}\left(\mathbf{u}_{i_{n_{k}}}^{k}|\mathbf{m}_{i_{n_{k}}}^{k,n}, \mathbf{V}_{i_{n_{k}}}^{k,n}\right)\right\}_{k}$ in (10) with conditional moment matching and multi-variate delta method.

end for

until Convergence

Return: $\{q(\mathcal{W}(t_n))\}_{n=1}^N, \{q(\mathbf{u}_j^k)\}_{1 \le k \le K, 1 \le j \le d_k}, q(\tau)$

Time cost: $\mathcal{O}(N\bar{R})$ **Space cost:** $\mathcal{O}\left(N\left(\bar{R}^2 + \sum_{k=1}^K R_k^2\right)\right)$

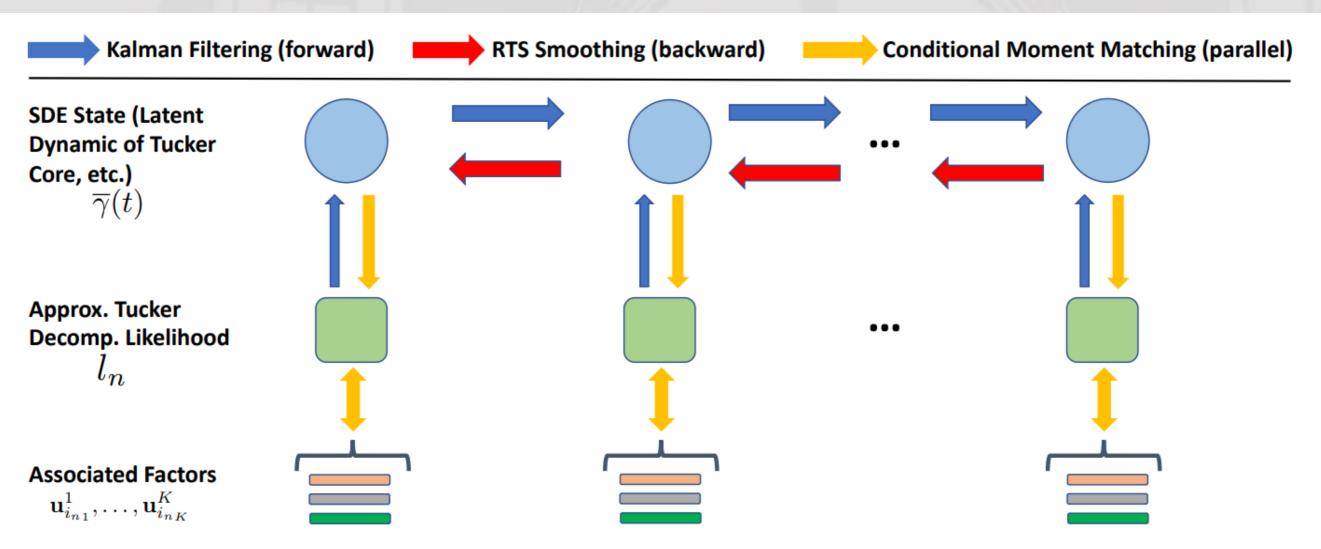
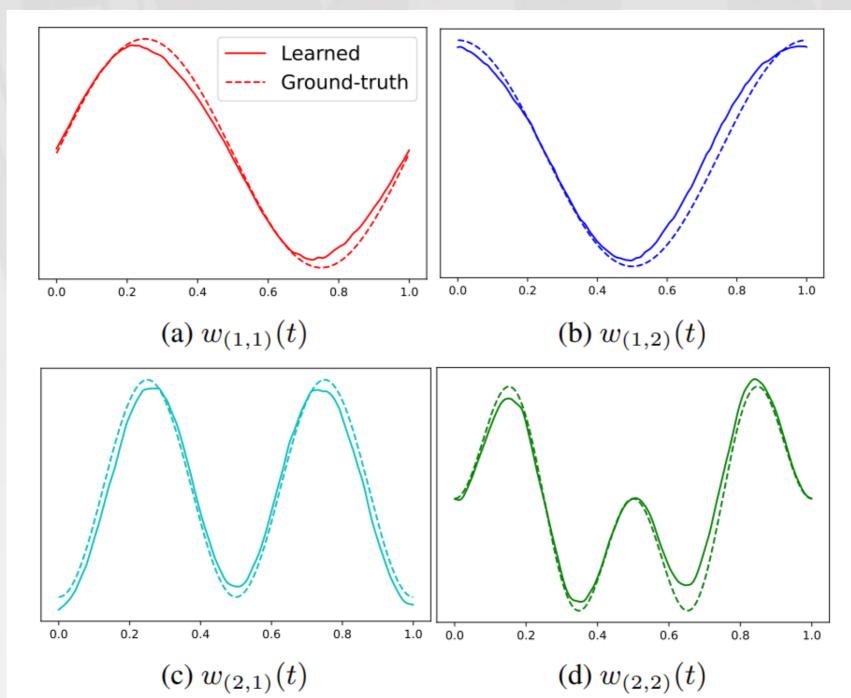


Figure 1. Graphical illustration of the message-passing inference algorithm.

Can BCTT capture the temporal patterns in tensor?

- Exp on simulation data
- Plot the dynamics of Tucker core



20

Can BCTT capture the temporal patterns in tensor?

- Exp on real-world data(DBLP dataset)
- Scatter low-rank structures of Tucker core

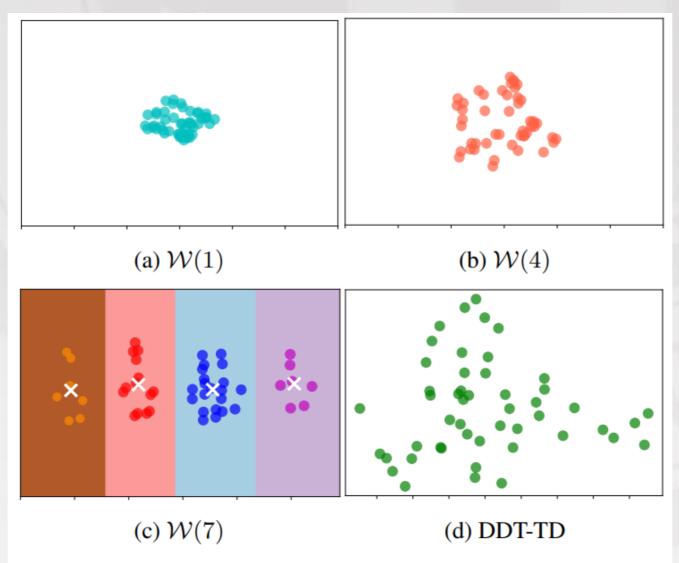


Figure 4. The structures of learned tensor-core at different time points by BCTT (a-c) and the static tensor-score learned by dynamic discrete-time Tucker decomposition (DDT-TD).

U. The University of Utah

Prediction with BCTT

• Prediction performance of BCTT on 3 real-world data

RMSE	MovieLens	AdsClicks	DBLP	RMSE	MovieLens	AdsClicks	
CT-CP	1.113 ± 0.004	1.337 ± 0.013	0.240 ± 0.007	CT-CP	1.165 ± 0.008	1.324 ± 0.013	
CT-GP	0.949 ± 0.008	1.422 ± 0.008	0.227 ± 0.009	CT-GP	0.965 ± 0.019	1.410 ± 0.015	
DT-GP	0.963 ± 0.008	1.436 ± 0.015	0.227 ± 0.007	DT-GP	0.949 ± 0.007	1.425 ± 0.015	
DDT-GP	0.957 ± 0.008	1.437 ± 0.010	0.225 ± 0.006	DDT-GP	0.948 ± 0.005	1.421 ± 0.012	
DDT-CP	1.022 ± 0.003	1.420 ± 0.020	0.245 ± 0.004	DDT-CP	1.141 ± 0.007	1.623 ± 0.013	
DDT-TD	1.059 ± 0.006	1.401 ± 0.022	0.232 ± 0.09	DDT-TD	0.944 ± 0.003	1.453 ± 0.035	
BCTT	0.922 ± 0.002	1.322 ± 0.012	0.214 ± 0.009	BCTT	0.895 ± 0.007	1.304 ± 0.018	
MAE				MAE			
CT-CP	0.788 ± 0.004	0.787 ± 0.006	0.105 ± 0.001	CT-CP	0.835 ± 0.006	0.792 ± 0.007	
CT-GP	0.714 ± 0.004	0.891 ± 0.011	0.092 ± 0.004	CT-GP	0.717 ± 0.012	0.883 ± 0.016	
DT-GP	0.722 ± 0.008	0.893 ± 0.008	0.084 ± 0.003	DT-GP	0.714 ± 0.005	0.886 ± 0.012	
DDT-GP	0.720 ± 0.003	0.894 ± 0.009	0.083 ± 0.001	DDT-GP	0.707 ± 0.004	0.882 ± 0.015	
DDT-CP	0.755 ± 0.002	0.901 ± 0.011	0.114 ± 0.002	DDT-CP	0.843 ± 0.003	1.082 ± 0.013	
DDT-TD	0.742 ± 0.006	0.866 ± 0.012	0.101 ± 0.001	DDT-TD	0.712 ± 0.002	0.903 ± 0.024	
BCTT	0.698 ± 0.002	0.777 ± 0.016	0.084 ± 0.001	BCTT	0.679 ± 0.001	0.785 ± 0.010	

(a) R = 3

(b) R = 7

Thanks for attention Q&A Time

Presenter' email: <u>shikai.fang@utah.edu</u>

Focus: Bayesian machine learning, tensor learning