Coarsening the Granularity: Towards
Structurally Sparse Lottery Tickets

[ICML 2022] Tianlong Chen?, Xuxi Chen?, Xiaolong Ma?, Yanzhi Wang?, Zhangyang Wang*

LUniversity of Texas at Austin, 2Northeastern University

The University of Texas at Austin

Electrical and Computer Engineering




Agenda

Vv YV VYV

The Current Limitation of (Unstructured) Lottery Tickets
Insightful Findings
Our Solutions

Our Main Experimental Results



The Current Limitation of (Unstructured) Lottery Tickets
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Figure 1. Achieved test accuracy over different sparsity levels of
diverse unstructured and structural subnetworks. Sparse models
from classical channel-wise structural pruning algorithms (He
et al., 2017; Liu et al., 2017; Bartoldson et al., 2019; Molchanov
et al., 2019) can not match the full accuracy of the dense model.



Insightful Findings

a

To our best knowledge, we are the first to demonstrate the existence of
structurally sparse winning tickets at non-trivial sparsity levels (i.e., > 30%), and
with both channel-wise and group-wise sparse patterns.

Extensive experiments validate our proposal on diverse datasets (i.e.,
CIFAR-10/100, Tiny-ImageNet, and ImageNet) across multiple network
architectures, including ResNets, VGG, and MobileNet. Specifically, our structural
winning tickets achieve 53.75%~64.93% GPU running time savings at 45%~80%
channel- and group-wise sparsity.
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Algorithm 2 TMP-Refill (+)

Input: f(z;m ® 6;) with unstructured sparsity s (Algo. 1)
Output: f(z;m © ;) with channel-wise structural mask

1:

2:

m at sparsity §

Calculate importance scores of each channel according
to certain criterion

Pick top-k channels in m, refill back their O (pruned)
elements with 1 (trainable) and update m, maintaining
§~s

: Pick and refill back extra channels in m with 5 < s

# Optional for Refill+

Algorithm 3 TMP-Regroup

Input: f(z;m ® 6;) with unstructured sparsity s from Al-

gorithm 1, hyperparameters ¢, ¢, by, and by

Output: f(z;m) © 6; with group-wise structural mask m

13
2:

8:
9:
10:
: end while
: Set other elements out of dense blocks to 0

11
12

at sparsity s*
while dense block can be found do
Divide the rows of the sparse pruning mask m into
t; groups using hypergraph partitioning (hMETIS)*
for group ¢; € {c1,¢2,...,¢,} do
if ¢; has > b, rows then
Select columns in ¢; that has no less than #o
non-zero items
if > b, columns are selected then
Group and Refill the selected columns as well
as rows to a dense block, and update m
end if
end if
end for




Our Main Experimental Results
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Figure 3. (Curve plots) Testing accuracy (%) over network sparsity (%) on Tiny-ImageNet and ImageNet datasets with ResNet-50 (25.56
M). (Radar plots) The end-to-end inference time saving of extreme structural winning tickets. Unstructured subnetworks or dense models
do not have structural sparsity, and thus they are plotted as dots in the axes of accuracy in the corresponding radar plot. The rigt plot
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Figure 4. Testing accuracy (%) over sparsity (%) on CIFAR-10/100 with Wide-ResNet-32-2 (1.86 M) and MobileNet-v1 (3.21 M).
(VGG-16, CIFAR-100)
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includes three extreme regroup tickets with accuracy drop < 1%, where “RG S: 2% indicates unstructured sparsity before regrouping.
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Figure 7. The layer-wise performance of convolution operations in
extreme structural winning tickets of (VGG-16, C10). The first six
conv. operations are omitted since there is no meaningful speedup,
coincided with Rumi et al. (2020). Marks like “C: 2.77” indicate
the layer-wise compression ratio of IMP-Regroup.
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Figure 5. (Curve plots) Testing accuracy (%) over sparsity (%) on CIFAR-10/100 with large models VGG-16 (14.72 M) and RN-18
(11.22 M). (Radar plots) The end-to-end inference time saving of extreme structural winning tickets. Note that unstructured subnetworks
or dense models do not have structural sparsity, and thus they are plotted as dots in the axes of accuracy in the corresponding radar plot.
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VGG, and MobileNet. Specifically, our structural winning tickets achieve 53.75% ~
64.93% GPU running time savings at 45% ~ 80% channel- and group-wise sparsity.
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- Figure 5. (Curve plots) Testing accuracy (%) over sparsity (%) on CIFAR-10/100 with large models VGG-16 (14.72 M) and RN-18

D Extra Refilled Channel for Refilling+ [:‘ Pruned Weights (11.22 M). (Radar plots) The end-to-end inference time saving of extreme structural winning tickets. Note that unstructured subnetworks

or dense models do not have structural sparsity, and thus they are plotted as dots in the axes of accuracy in the corresponding radar plot.

networks on certain
hardware platforms like
smartphone processors.
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