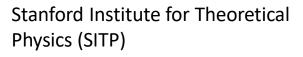
Born-Infeld (BI) for AI:

Energy-Conserving Descent (ECD) for Optimization

G. Bruno De Luca*



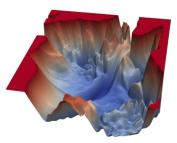
Eva Silverstein*

Acknowledgements \supset

Discussions w/ J. Batson, Y. Kahn, D. Roberts on inflationary cosmology and optimization; early collaboration G. Panagopoulos, T. Bachlechner New discussions/collaborations: ML (Kunin), Computational Chemistry (Zhang), Sampling (Robnik/Seljak), ... Reviewers & conference organizers

Overview: Optimization of an objective function F

- Data analysis/Machine Learning [F = loss]
- Solving (Partial) Differential Equations
 [F = Σ (PDEs)²+(boundary conditions)²]
- Many scientific applications



[Image from Li et al., '18]

Gradient Descent with Momentum (GDM) can work well with modern tweaks.

Physical analogue: particle motion on potential energy V = F, with friction, discretized.

Our proposal: Energy Conserving Descent (**ECD**): discretized physical evolution, *without friction*, nonetheless slowing near minimal **F**. Examples include:

- BBI: relativistic, (speed limit)² = $V = F \Delta V$ [or more general (speed limit)² = g(V)]
- Ruthless: non-relativistic, mass ∝ 1/g(V)

10¹

10

> 10-

10-3

10-

10



+ other synthetics, PDEs, small ML (Cifar, MNIST, Tiny ImageNet [new]), chemistry, sampling [new]

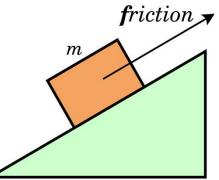
No friction \Rightarrow **Energy Conservation** \Rightarrow favorable properties and improved calculability: concrete formula for distribution of results: in all dims weighted toward small V = F- Δ V

Physics ofParticle descending a potential energy landscape VGDM $V(\Theta) = F(\Theta) - \Delta V$

Familiar law of motion:

Force = mass × acceleration

$$-\nabla V - f\dot{\Theta} = m \ddot{\Theta}$$



Friction coefficient $f \Rightarrow$ Energy not conserved First-order form: $p = m\dot{\Theta}$ $\dot{p} = -p\frac{f}{m} - \nabla V$

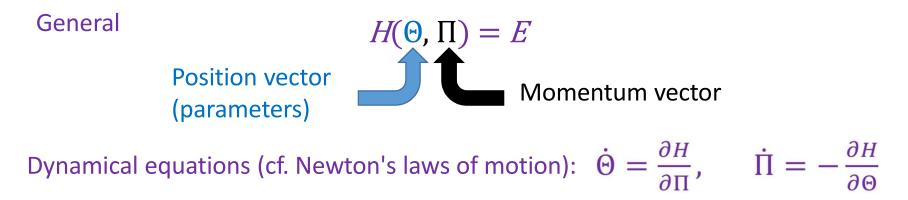
Discretization \rightarrow GD with Momentum (GDM) + minibatches \rightarrow SGDM

- Energy $E = \frac{p^2}{2m} + V(\Theta)$ not conserved because of friction
- f=0 would conserve energy, but the particle flies quickly past V \simeq 0, spending very little time there (especially in high dimensions)

ECD: physical dynamics can conserve energy yet slow near V=0 Next: explicit realizations

Explicit realizations of ECD

Change the dynamics to conserve Energy E and favor $V \simeq 0$



1. BI: (speed limit)² = $V = F - \Delta V$, [or general function g(V)]

$$H = \sqrt{g(V)(\Pi^2 + g(V))} = g(V) / \sqrt{1 - \frac{\dot{\Theta}^2}{g(V)}}$$

• Cannot exceed relativistic speed limit: $\dot{\Theta}^2 \leq g(V)$ [ES, Tong, Alishahiha '04, cf. França et al. '20]

2. Rootless (Ruthless): mass $\propto 1/g(V)$ $H = \left(\frac{\Pi^2}{2m(V)}\right) = g(V) \Pi^2 = \frac{1}{2}m(V)\dot{\Theta}^2$

• Slows as the particle gets heavy: $m(V) \rightarrow \infty$, $g(V) \rightarrow 0 \Rightarrow \dot{\Theta}^2 \rightarrow 0$

Building ECD optimization algorithms

- 0. Choose the continuum dynamical system
- 1. Discretize the continuum equations of motion

• e.g. BI with

$$g(V) = V:$$

$$\sqrt{V(V + \vec{\pi}^2)} \equiv E$$

$$\pi_i(t + \Delta t) - \pi_i(t) = -\Delta t \frac{\partial_i V(\Theta(t))}{2} \left(\frac{E}{V} + \frac{V}{E}\right)$$

$$\theta_i(t + \Delta t) - \theta_i(t) = \Delta t \pi_i(t + \Delta t) \frac{V(\Theta(t))}{E}$$

- 2. Choose an initialization
 - Common choice: $\Pi(0) \Rightarrow E = V(0)$
 - Option: E > 0 => choice of $\Pi(0)$ compatible with Energy eq.
- 3. Use discretized equation as update rules
- 4. Add other features
 - Enforce strict Energy conservation rescaling Π
 - Adaptive tuning of shift $\Delta V = F V$ (next page)
 - Option: random rotation of momenta ("bouncing", explained later)
- 5. Test it!

DATA SET	SGD	BBI
MNIST CIFAR-10	$\begin{array}{r} 99.166 \\ 92.628 \\ , 92.655 \end{array}$	$\begin{array}{r} 99.177 \ , \ 99.190 \\ 92.434 \ , \ 92.435 \end{array}$

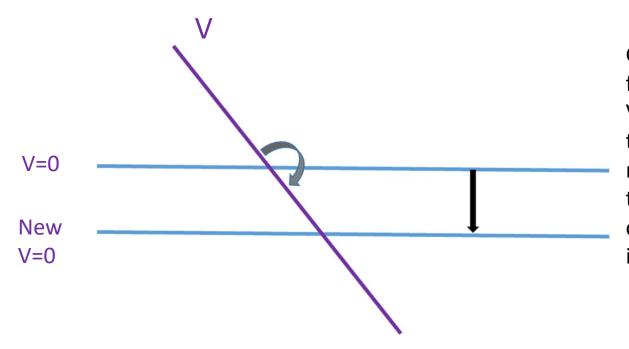
Modest (~50) statistics and limited hyper-parameter tuning (without all the tweaks on either side); just a check of basic competence. "Bouncing" not required here.

Automatic (adaptive) Tuning of ΔV

The value of the loss function F at the objective is not always known:

$$V = \mathbf{F} - \Delta V$$

 ΔV is a hyperparameter that can automatically adjust (recover from an over-estimate). New upgrade to optimizer code.



Given a too-high initial guess for ΔV , the loss extends to $V = F - \Delta V < 0$ and the trajectory will jump to a small negative value V < 0 due to the discreteness. Conditioned on this, ΔV may be lowered, iteratively tuning it.

Recap so far: • Optimization of an objective function F

- Descent dynamics as (discrete) physical evolution on a potential $V = F-\Delta V$
- Equations of motion (update rules) obtained from a Hamiltonian H
 - Gradient Descent with Momentum: a time-dependent $H(\Pi, \Theta, t)$
 - Energy not conserved: $\dot{E} = -f \frac{\Pi^2}{m^2} \leqslant 0$
 - Simply removing friction (f =0) does not converge
- Alternative physics: Energy Conserving dynamical systems converging to V–>0 $E = H_{\rm ECD}(\Theta,\Pi)$
 - Energy is conserved: $\dot{E} = 0$
 - 2 explicit examples: **BI** [relativistic], **Ruthless** [m = 1/g(V)].
 - Discretization gives update rules \rightarrow new optimization algorithms

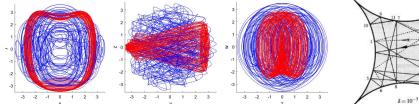
Simple benchmarks show that the idea works: friction not needed for optimization. Next: advantages of conserving energy

Energy Conservation

$$H = \frac{V}{\sqrt{1 - \frac{\dot{\vec{\theta}}^2}{V}}} = \sqrt{V(V + \vec{\pi}^2)} \equiv E = constant \quad \Longrightarrow$$

• **Cannot** stop unless V=E or V=0, so cannot stop in high local minimum

Can get stuck in orbit at high V. Generically such orbits are unstable: chaos – sensitive dependence on initial conditions – is typical in physical systems. Nearby trajectories disperse roughly on a *mixing* timescale.



[Image from Dong, Yuan, Du et al. '19]

 $\delta = 10^{-7}$

[Image from Encyclopedia of Nonlinear Science, '04]

Chaos and *mixing* has been **proven** in mathematical billiards problems.

This inspires optional Bounces in BI algorithm above to reduce the mixing time \Rightarrow BBI

- *Phase space* (positions & momenta) *volume* is preserved under the evolution. $Vol(phase space) = \int d^n \Theta d^n \Pi \delta(H(\Pi, \Theta) E)$
- Past the mixing time, the probability to find a particle from a droplet (bundle of trajectories) in a region M of phase space is ∝ Vol(M)

For ECD, phase space volume is strongly dominated near V=0:

$$Vol(\mathcal{M}) = \frac{2\pi^{n/2}}{\Gamma(n/2)} \int d^n \theta \int d\tilde{\pi} \tilde{\pi}^{n-1} \delta(\sqrt{V(V+\tilde{\pi}^2)} - E) = \frac{2\pi^{n/2}}{\Gamma(n/2)} \int d^n \theta \frac{E}{V} \left(\frac{E^2}{V} - V\right)^{\frac{n-2}{2}}$$
For $V \to 0$, $Vol \propto \int \frac{d^n \Theta}{V^{n/2}} = \int d\Omega \int d|\Theta| |\Theta|^{n-1} \frac{1}{V^{n/2}}$

For a basin V ~ $|\Theta|^2$, this becomes ~ $\int d\Omega \int d|\Theta|/|\Theta|$

 $V \rightarrow g(V) \sim V^{\eta} \quad \eta > 1$ enhances the preference for V=0 (beats the effect of high dimension n!) (g(V) also useful for sampling, in addition to optimization) [GBDL, Roblik, Seljak, ES in progress]

• In contrast, pure momentum would not favor small V:

 $\operatorname{Vol}(\mathcal{M}) \propto \int d^n \theta (E - V)^{\frac{n-2}{2}}$ frictionless non-relativistic momentum

• The volume formula would not apply at all with friction (less predictive in that sense).

Exploiting the volume formula for image classification (preliminary)

[Izmailov et al. '19]

• Enhancement of volume density for $\eta > 1$ near a quadratic minimum V ~ θ^2 :

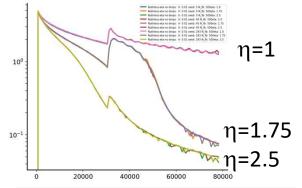
Accuracy (weights averaged)

 $\operatorname{vol} \propto |\Theta|^{n(1-\eta)-1} d|\Theta|$

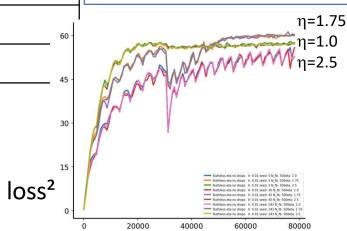
• Small Tests on Tiny-ImageNet* with D. Kunin (+ImageNet 1K in progress)

Protocol: Ir = 0.01, **no** Ir drop needed, 500 bounces,

Averaging of late-epoch weights (SWA)



Training loss decreases monotonically with η, improving test accuracy for intermediate η>1



Compared with SGD: with Ir drops (start 0.1, drop factor 0.1@ep. [30,60,80]) :

Accuracy

55.44

61.3

 $m=1/V^{\eta}$

n=1

η=1.75

Accuracy: 62.52, Accuracy (weights averaged): 62.93 SGD: without Ir drops is worse, as well as with loss \rightarrow loss²

[ECD also > best comparable SGDM in cf. Li et al. '21, Tanaka, Kunin et al. '20...]

62.12

64.1

*ResNet-18, epochs: 100, batch size: 128, weight decay: 10⁻⁴, loss: Cross Entropy

Testing the volume formula

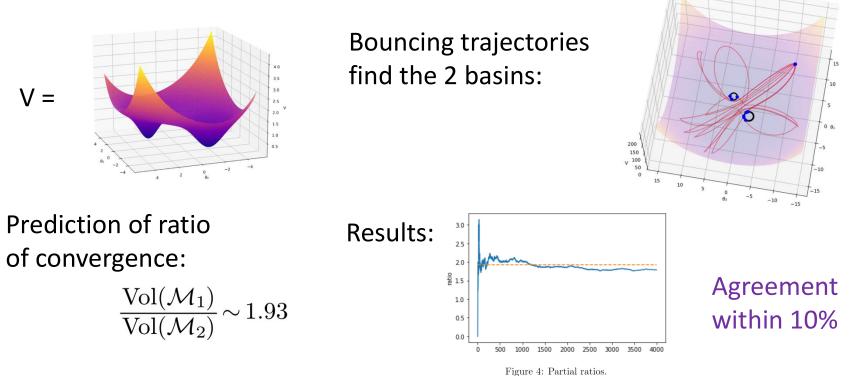
Evaluated in different regions predicts distribution of results (given mixing)

For g(V) = V:
$$Vol(\mathcal{M}_{\mathcal{I}}) = \frac{2\pi^{n/2}}{\Gamma(n/2)} E^{n-1} \int d^n (\theta - \theta_I) V^{-n/2}$$

Near a minimum:

$$V \simeq V_I + \frac{1}{2} \sum_{i=1}^n m_{Ii}^2 (\theta_i - \theta_{Ii})^2 \quad Vol(\mathcal{M}_{\mathcal{I}}) \to b_n \left(\frac{2\pi^{n/2}}{\Gamma(n/2)}\right)^2 \frac{E^{n-1}}{\prod_i m_{Ii}} \log(V_I) \quad V_I \to 0$$

Empirical check:



Behavior in shallow regions

Volume formula prefers flatter minima ML lore: flatter minima generalize better $V \simeq V_I + \frac{1}{2} \sum_{i=1}^n m_{Ii}^2 (\theta_i - \theta_{Ii})^2$ $V \simeq V_I + \frac{1}{2} \sum_{i=1}^n m_{Ii}^2 (\theta_i - \theta_{Ii})^2$

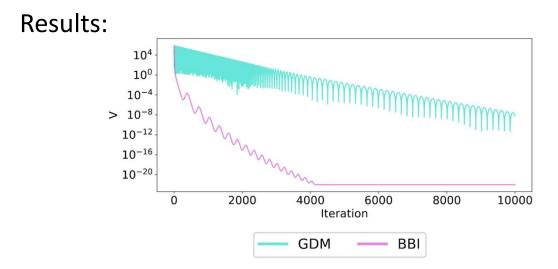
$$Vol(\mathcal{M}_{\mathcal{I}}) \to b_n \left(\frac{2\pi^{n/2}}{\Gamma(n/2)}\right)^2 \frac{E^{n-1}}{\prod_i m_{Ii}} \log(V_I) \quad V_I \to 0, \qquad m_{iI}^2 \to 0$$

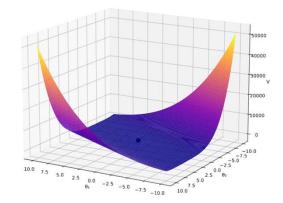
Prediction: BI is faster on shallow directions than GD

$$\Theta \sim e^{-mt/\sqrt{2}}$$
 vs $\Theta \sim e^{-m^2t/f}$

Empirical check:

V = 10-dimensional Zakharov function





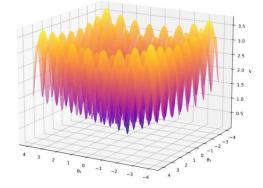
Hyperparameters tuned with hyperopt

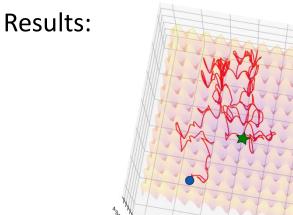
Avoiding high local minima

Energy conservation: **ECD** cannot stop in high local minima

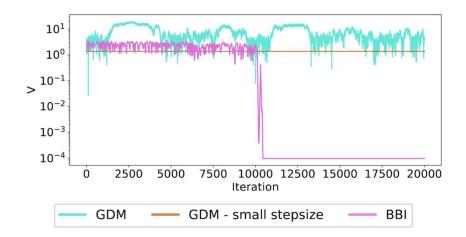
Empirical check: Highly non-convex function

V = 2-dim Ackley function :





BBI explores and finds the global minimum



Hyperoptimized fixed Ir, and for GDM also momentum. GDM either stuck in initial basin or helped out by `catapult' mechanism [Lewkowycz et al. '20], , then more erratic (not settling in global minimum).

Summary comparison

		- 1
ECD	Friction $((S)GDM, \ldots)$	-
CONSERVES ENERGY E	FRICTION DRAINS E	
CANNOT GET STUCK	CAN STOP IN HIGH	
IN HIGH LOCAL MINIMUM	LOCAL MINIMUM	
CANNOT OVERSHOOT	Can overshoot	
$V = 0 = \nabla V$	$V = 0 = \boldsymbol{\nabla} V$	
Depends on V and ∇V	Depends only on ${oldsymbol abla} V$	
ON SHALLOW REGION:	ON SHALLOW REGION:	
$\theta \sim e^{-mt/\sqrt{2}}$	$\theta \sim e^{-m^2 t/f}$	
ANALYTIC PREDICTION	STOCHASTIC INTUITION	Generalization ok:
FOR DISTRIBUTION	FOR DISTRIBUTION	speed limit kicks in for
GENERALIZES	GENERALIZES	$V \ll E$, Vol(phase space

ase space) favors flat basins.

Statements persist with noise (mini-batches) in our prescription: BBI speed limit tamps down noise, while the bounces (when needed) provide controlled stochasticity for short mixing time.

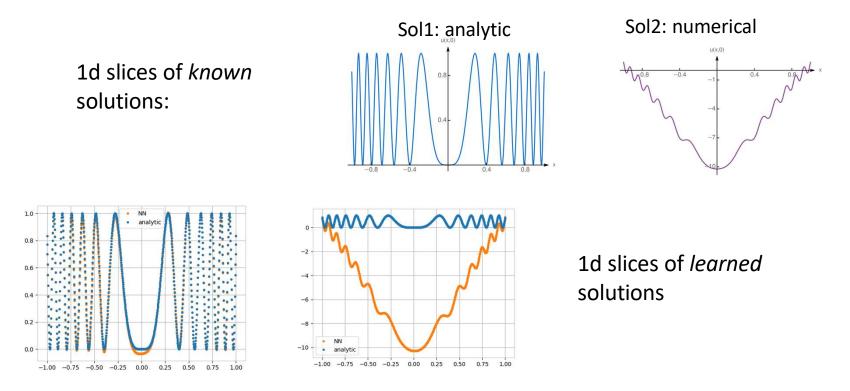
Application: Solving Partial Differential Equations

 Most common strategy with ML tools: a NN as ansatz for the PDE: — Raiss

[Lagaris et al. '98, ..., Raissi et al. '19,..]

$$\mathbf{F} = V = \sum_{x \in \text{domain}} \text{PDE}[\mathcal{N}(x;\Theta)]^2 + \gamma \sum_{x \in \text{boundary}} \text{BC}[\mathcal{N}(x;\Theta)]^2 + R(\Theta)$$

• We reverse-engineered hard (highly nonlinear) 2d PDEs with known multiple solution and checked if ECD optimization finds them



Found **both** from same initialization: bounces distribute results (mixing)

Ongoing work:

- Quantum Chemistry (with Zhang)
 - Find the minimum energy configuration of a molecule
 F = binding energy < 0 ⇒ requires ΔV
 - Automatic tuning tested successfully

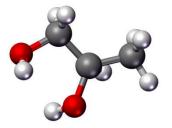
- Exploit the volume formula from frictionless dynamics for better generalization
- Efficient sampling from a function exp(-F) (with Robnik, Seljak)
 - Reverse engineer g(V) such that

Vol(phase space) = $\int d^n \Pi \int d^n \Theta \exp(-F) \delta(E - H(\Theta, \Pi)) \propto \int d^n \Theta \exp(-F)$

• In contrast to Hamiltonian Monte Carlo, no momentum sampling needed

Future directions:

- Feature learning theory and experiment
 - Bounces along the directions of hidden layer parameters



https://doi.org/10.5281/zenodo.3926055]