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Sighed Graphs

* Social networks can be seen as signed networks
 Each edge has a sign + or — indicating whether
= |nteraction was positive +

= or negaltive —

* Allows to detect conflicting groups
in social networks

= Democrats vs Republicans

= analyze trust in Bitcoin networks '
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 Real-world graphs are huge and clustering

the entire graph is often infeasible
» Often we do not have access to the full

graph (e.g., Twitter) \\
= We cannot read the full graph \ /
 We assume query-access to the graph,

l.e., we can sample random vertices and

random neighbors

o—

* |n many applications we need the cluster N~
information only for a few vertices

 Must be very fast and space efficient
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Our Signed Oracle

* Our oracle data structure allows the query:

 (Given a vertex u,
which cluster does u belong to?

\\
* Jo classify a vertex,
we perform a small number of signed random walks

5 Esggevertex can be classified in sublinear time and .<‘~\\ é
= \ery efficient when only a few vertices need to be
classified




We Can Provably Recover Planted Clusters

O\




We Can Provably Recover Planted Clusters

O\

» Consider graph with n vertices




We Can Provably Recover Planted Clusters

O\

» Consider graph with n vertices

* Assumptions: 3
bounded degrees, O(1) clusters, “nice” planted clusters

N

X

o




We Can Provably Recover Planted Clusters

O\

» Consider graph with n vertices

* Assumptions: 3
bounded degrees, O(1) clusters, “nice” planted clusters

* Theorem (informal):
We can return the cluster index of a vertex with query time O(\/ﬁ).
The answer is (1 — €)-close to the planted clustering with

probability at least 90%. \/
Y
K\\&J

>




We Can Provably Recover Planted Clusters

O\

» Consider graph with n vertices

* Assumptions: 3
bounded degrees, O(1) clusters, “nice” planted clusters

* Theorem (informal):
We can return the cluster index of a vertex with query time 0(\/;).

The answer is (1 — €)-close to the planted clustering with
probability at least 90%.

= (Gives theoretical analysis for random walks with signs and
provides new results for spectral graph theory of signed graphs N




We Can Provably Recover Planted Clusters

O\

» Consider graph with n vertices

* Assumptions: 3
bounded degrees, O(1) clusters, “nice” planted clusters

* Theorem (informal):
We can return the cluster index of a vertex with query time 0(\/;).

The answer is (1 — €)-close to the planted clustering with
probability at least 90%.

= (Gives theoretical analysis for random walks with signs and
provides new results for spectral graph theory of signed graphs N

* Theoretical analysis for identifying conflicts, but not the sides




We Can Provably Recover Planted Clusters

» Consider graph with n vertices

* Assumptions: 3
bounded degrees, O(1) clusters, “nice” planted clusters

* Theorem (informal):
We can return the cluster index of a vertex with query time 0(\/;).

The answer is (1 — €)-close to the planted clustering with
probability at least 90%. e ———

= Gives theoretical analysis for random walks with signs and
provides new results for spectral graph theory of signed graphs §

* Theoretical analysis for identifying conflicts, but not the sides
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Also Highly Practical

* |n practice, we can identify the conflict groups!

* For large clusters,
our oracle has higher accuracy than baselines

 Much faster than global methods if we only need to
classify a small number of vertices!

= Each query takes <1.5 seconds on a graph with
250k vertices and 3M edges

= Easy to parallelize

 We provide a new signed graph dataset with large
ground-truth communities




How Does the Oracle Work?



0
C
Q.
(O
S
O
5
O,
-
O
n
-
-



Unsigned Graphs



Unsigned Graphs



Unsigned Graphs



Unsigned Graphs



Unsigned Graphs



0
C
Q.
(O
S
O
5
O,
-
O
n
-
-



0
C
Q.
(O
S
O
5
O,
-
O
n
-
-



0
C
Q.
(O
S
O
5
O,
-
O
n
-
-



Unsigned Graphs




0
C
Q.
(O
S
O
5
O,
-
O
n
-
-



0
C
Q.
(O
S
O
5
O,
-
O
n
-
-



Unsigned Graphs



0
C
Q.
(O
S
O
5
O,
-
O
n
-
-



Unsigned Graphs

Computing communities in large networks using random walks
P Pons, M Latapy - International symposium on computer and information ..., 2005 - Springer

Dense subgraphs of sparse graphs (communities), which appear in most real-world complex

networks, play an important role in many contexts. Computing them however is generally ...
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Dense subgraphs of sparse graphs (communities), which appear in most real-world complex
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Testing cluster structure of graphs

A Czumaj, P Peng, C Sohler - Proceedings of the forty-seventh annual ..., 2015 - dl.acm.org

We study the problem of recognizing the cluster structure of a graph in the framework of
property testing in the bounded degree model. Given a parameter €, a d-bounded degree
graph is defined to be (k, @)-clusterable, if it can be partitioned into no more than k parts,
such that the (inner) conductance of the induced subgraph on each part is at least ¢ and the
(outer) conductance of each part is at most cd, k € 4 ¢ 2, where cd, k depends only on d, k.
Our main result is a sublinear algorithm with the running time~ O (V n- poly (o, k, 1/¢)) that ...
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Sighed Graphs

What changes when we have
signs?
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Random Walks With Signs

* Initialize sign s = +
« When traversing an edge, multiply s with the edge sign

= the friend of my friend is my friend
if s = + and we traverse a positive edge, new sign s = -+

= the enemy of my friend is my enemy
if s = 4+ and we traverse a edge, new sign

= the friend of my enemy is my enemy
If and we traverse a positive edge, new sign

= the enemy of my enemy is my friend
it and we traverse a edge, new sign s = +

 We do not make any changes to the randomness of the walk
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Some Intuition

What signs of random walks
do we expect?

» Ifwestartin V, andendin V,,
sign should be +

e If westartin V/, andendin !/,
sign should be

« If we start in V/, then the probability to
end in V\(V, U V,) should be very small
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. CommunityVector(u):
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« Foreachw € V-
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Community Vectors

« Suppose that for each cluster C, ..., C; we know

- d-vertex v. € C.
° CommunityVector(u): a seed-vertex v; € (;

« Initialize an empty vector m € R” * WhichCluster(u):
 Perform 4/n random walks of length log n starting at u » m,, < SignedCommunityVector(1)

« Foreachw € V- . m,, < SignedCommunityVector(v) for all i

e m_(w) « fraction of random walks that end at w with sign +

. IF = arg min min{ ”mu - mviH2’ Hmu T mv,-HZ}
l

o < fraction of random walks that end at w with sign

e Return that u is from cluster ;"
o m(w) « m,(w) —

= |ntuition: if u is from cluster i*,
then the community vectors of m, and m,,

should be similar

= \we expect that if w is on the same side as u then m(w) > 0,
if W is on the other side of i then m(w) < 0, and
if w is from a different cluster then m(w) ~ 0O
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Main Technical Result

. Let Z =1— D Y?AD"? be the signed normalized Laplacian ; ;7

 Letv,,..., v, bethe orthonormal row eigenvectors of £, i.e., AV. = v.Z,
and assumethat) < /4, < --- < 4,

= [he vectors v, ..., V, essentially reveal the polarized communities

 More formally, consider a polarized cluster U = (V, V).
Then (if G is degree-bounded, clusterable, and still simplifying a lot) for all 1 S 1, cees k,

|
V() ~ +m ifu eV, and vi(u) & if
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