
ICML’22

Sublinear-Time Clustering Oracle 
for Signed Graphs
Stefan Neumann (KTH) and Pan Peng (USTC)
@StefanResearch

Graph Clustering

• Ubiquitous task in machine learning and
data science

Graph Clustering

• Ubiquitous task in machine learning and
data science

• Application: 
Find communities in (social) networks

Graph Clustering

• Ubiquitous task in machine learning and
data science

• Application: 
Find communities in (social) networks

• Typically studied for unsigned graphs

Signed Graphs

• Social networks can be seen as signed networks

Signed Graphs

• Social networks can be seen as signed networks

• Each edge has a sign or indicating whether+ −

Signed Graphs

• Social networks can be seen as signed networks

• Each edge has a sign or indicating whether+ −

➡ interaction was positive +

Signed Graphs

• Social networks can be seen as signed networks

• Each edge has a sign or indicating whether+ −

➡ interaction was positive +

➡ or negative −

Signed Graphs

• Social networks can be seen as signed networks

• Each edge has a sign or indicating whether+ −

➡ interaction was positive +

➡ or negative −

• Allows to detect conflicting groups 
in social networks

Signed Graphs

• Social networks can be seen as signed networks

• Each edge has a sign or indicating whether+ −

➡ interaction was positive +

➡ or negative −

• Allows to detect conflicting groups 
in social networks

Signed Graphs

• Social networks can be seen as signed networks

• Each edge has a sign or indicating whether+ −

➡ interaction was positive +

➡ or negative −

• Allows to detect conflicting groups 
in social networks

Signed Graphs

• Social networks can be seen as signed networks

• Each edge has a sign or indicating whether+ −

➡ interaction was positive +

➡ or negative −

• Allows to detect conflicting groups 
in social networks

➡ Democrats vs Republicans

Signed Graphs

• Social networks can be seen as signed networks

• Each edge has a sign or indicating whether+ −

➡ interaction was positive +

➡ or negative −

• Allows to detect conflicting groups 
in social networks

➡ Democrats vs Republicans

➡ analyze trust in Bitcoin networks

Sublinear-Time Algorithms
• Real-world graphs are huge and clustering

the entire graph is often infeasible

Sublinear-Time Algorithms
• Real-world graphs are huge and clustering

the entire graph is often infeasible

• Often we do not have access to the full
graph (e.g., Twitter)

Sublinear-Time Algorithms
• Real-world graphs are huge and clustering

the entire graph is often infeasible

• Often we do not have access to the full
graph (e.g., Twitter)

➡ We cannot read the full graph

Sublinear-Time Algorithms
• Real-world graphs are huge and clustering

the entire graph is often infeasible

• Often we do not have access to the full
graph (e.g., Twitter)

➡ We cannot read the full graph

• We assume query-access to the graph, 
i.e., we can sample random vertices and
random neighbors

Sublinear-Time Algorithms
• Real-world graphs are huge and clustering

the entire graph is often infeasible

• Often we do not have access to the full
graph (e.g., Twitter)

➡ We cannot read the full graph

• We assume query-access to the graph, 
i.e., we can sample random vertices and
random neighbors

• In many applications we need the cluster
information only for a few vertices

Sublinear-Time Algorithms
• Real-world graphs are huge and clustering

the entire graph is often infeasible

• Often we do not have access to the full
graph (e.g., Twitter)

➡ We cannot read the full graph

• We assume query-access to the graph, 
i.e., we can sample random vertices and
random neighbors

• In many applications we need the cluster
information only for a few vertices

• Must be very fast and space efficient

Our Signed Oracle

Our Signed Oracle

• Our oracle data structure allows the query:

Our Signed Oracle

• Our oracle data structure allows the query:

• Given a vertex , 
which cluster does belong to?

u
u

Our Signed Oracle

• Our oracle data structure allows the query:

• Given a vertex , 
which cluster does belong to?

u
u

• To classify a vertex, 
we perform a small number of signed random walks

Our Signed Oracle

• Our oracle data structure allows the query:

• Given a vertex , 
which cluster does belong to?

u
u

• To classify a vertex, 
we perform a small number of signed random walks

Our Signed Oracle

• Our oracle data structure allows the query:

• Given a vertex , 
which cluster does belong to?

u
u

• To classify a vertex, 
we perform a small number of signed random walks

Our Signed Oracle

• Our oracle data structure allows the query:

• Given a vertex , 
which cluster does belong to?

u
u

• To classify a vertex, 
we perform a small number of signed random walks

Our Signed Oracle

• Our oracle data structure allows the query:

• Given a vertex , 
which cluster does belong to?

u
u

• To classify a vertex, 
we perform a small number of signed random walks

Our Signed Oracle

• Our oracle data structure allows the query:

• Given a vertex , 
which cluster does belong to?

u
u

• To classify a vertex, 
we perform a small number of signed random walks

Our Signed Oracle

• Our oracle data structure allows the query:

• Given a vertex , 
which cluster does belong to?

u
u

• To classify a vertex, 
we perform a small number of signed random walks

Our Signed Oracle

• Our oracle data structure allows the query:

• Given a vertex , 
which cluster does belong to?

u
u

• To classify a vertex, 
we perform a small number of signed random walks

Our Signed Oracle

• Our oracle data structure allows the query:

• Given a vertex , 
which cluster does belong to?

u
u

• To classify a vertex, 
we perform a small number of signed random walks

• Each vertex can be classified in sublinear time and
space

Our Signed Oracle

• Our oracle data structure allows the query:

• Given a vertex , 
which cluster does belong to?

u
u

• To classify a vertex, 
we perform a small number of signed random walks

• Each vertex can be classified in sublinear time and
space

➡ Very efficient when only a few vertices need to be
classified

We Can Provably Recover Planted Clusters

We Can Provably Recover Planted Clusters

• Consider graph with verticesn

We Can Provably Recover Planted Clusters

• Consider graph with verticesn

• Assumptions: 
bounded degrees, clusters, “nice” planted clustersÕ(1)

We Can Provably Recover Planted Clusters

• Consider graph with verticesn

• Assumptions: 
bounded degrees, clusters, “nice” planted clustersÕ(1)

• Theorem (informal): 
We can return the cluster index of a vertex with query time . 
The answer is -close to the planted clustering with
probability at least 90%.

Õ(n)
(1 − ε)

We Can Provably Recover Planted Clusters

• Consider graph with verticesn

• Assumptions: 
bounded degrees, clusters, “nice” planted clustersÕ(1)

• Theorem (informal): 
We can return the cluster index of a vertex with query time . 
The answer is -close to the planted clustering with
probability at least 90%.

Õ(n)
(1 − ε)

➡ Gives theoretical analysis for random walks with signs and
provides new results for spectral graph theory of signed graphs

We Can Provably Recover Planted Clusters

• Consider graph with verticesn

• Assumptions: 
bounded degrees, clusters, “nice” planted clustersÕ(1)

• Theorem (informal): 
We can return the cluster index of a vertex with query time . 
The answer is -close to the planted clustering with
probability at least 90%.

Õ(n)
(1 − ε)

➡ Gives theoretical analysis for random walks with signs and
provides new results for spectral graph theory of signed graphs

• Theoretical analysis for identifying conflicts, but not the sides

We Can Provably Recover Planted Clusters

• Consider graph with verticesn

• Assumptions: 
bounded degrees, clusters, “nice” planted clustersÕ(1)

• Theorem (informal): 
We can return the cluster index of a vertex with query time . 
The answer is -close to the planted clustering with
probability at least 90%.

Õ(n)
(1 − ε)

➡ Gives theoretical analysis for random walks with signs and
provides new results for spectral graph theory of signed graphs

• Theoretical analysis for identifying conflicts, but not the sides

Also Highly Practical

Also Highly Practical

• In practice, we can identify the conflict groups!

Also Highly Practical

• In practice, we can identify the conflict groups!

Also Highly Practical

• In practice, we can identify the conflict groups!

• For large clusters, 
our oracle has higher accuracy than baselines

Also Highly Practical

• In practice, we can identify the conflict groups!

• For large clusters, 
our oracle has higher accuracy than baselines

• Much faster than global methods if we only need to
classify a small number of vertices!

Also Highly Practical

• In practice, we can identify the conflict groups!

• For large clusters, 
our oracle has higher accuracy than baselines

• Much faster than global methods if we only need to
classify a small number of vertices!

➡ Each query takes ≤1.5 seconds on a graph with
250k vertices and 3M edges

Also Highly Practical

• In practice, we can identify the conflict groups!

• For large clusters, 
our oracle has higher accuracy than baselines

• Much faster than global methods if we only need to
classify a small number of vertices!

➡ Each query takes ≤1.5 seconds on a graph with
250k vertices and 3M edges

➡ Easy to parallelize

Also Highly Practical

• In practice, we can identify the conflict groups!

• For large clusters, 
our oracle has higher accuracy than baselines

• Much faster than global methods if we only need to
classify a small number of vertices!

➡ Each query takes ≤1.5 seconds on a graph with
250k vertices and 3M edges

➡ Easy to parallelize

• We provide a new signed graph dataset with large
ground-truth communities

How Does the Oracle Work?

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

What changes when we have
signs?

Signed Graphs

Random Walks With Signs

Random Walks With Signs

• Initialize sign s = +

Random Walks With Signs

• Initialize sign s = +

• When traversing an edge, multiply with the edge signs

Random Walks With Signs

• Initialize sign s = +

• When traversing an edge, multiply with the edge signs

➡ the friend of my friend is my friend 
 if and we traverse a positive edge, new sign s = + s = +

Random Walks With Signs

• Initialize sign s = +

• When traversing an edge, multiply with the edge signs

➡ the friend of my friend is my friend 
 if and we traverse a positive edge, new sign s = + s = +

Random Walks With Signs

• Initialize sign s = +

• When traversing an edge, multiply with the edge signs

➡ the friend of my friend is my friend 
 if and we traverse a positive edge, new sign s = + s = +

➡ the enemy of my friend is my enemy 
 if and we traverse a negative edge, new sign s = + s = −

Random Walks With Signs

• Initialize sign s = +

• When traversing an edge, multiply with the edge signs

➡ the friend of my friend is my friend 
 if and we traverse a positive edge, new sign s = + s = +

➡ the enemy of my friend is my enemy 
 if and we traverse a negative edge, new sign s = + s = −

Random Walks With Signs

• Initialize sign s = +

• When traversing an edge, multiply with the edge signs

➡ the friend of my friend is my friend 
 if and we traverse a positive edge, new sign s = + s = +

➡ the enemy of my friend is my enemy 
 if and we traverse a negative edge, new sign s = + s = −

➡ the friend of my enemy is my enemy 
 if and we traverse a positive edge, new sign s = − s = −

Random Walks With Signs

• Initialize sign s = +

• When traversing an edge, multiply with the edge signs

➡ the friend of my friend is my friend 
 if and we traverse a positive edge, new sign s = + s = +

➡ the enemy of my friend is my enemy 
 if and we traverse a negative edge, new sign s = + s = −

➡ the friend of my enemy is my enemy 
 if and we traverse a positive edge, new sign s = − s = −

Random Walks With Signs

• Initialize sign s = +

• When traversing an edge, multiply with the edge signs

➡ the friend of my friend is my friend 
 if and we traverse a positive edge, new sign s = + s = +

➡ the enemy of my friend is my enemy 
 if and we traverse a negative edge, new sign s = + s = −

➡ the friend of my enemy is my enemy 
 if and we traverse a positive edge, new sign s = − s = −

➡ the enemy of my enemy is my friend  
 if and we traverse a negative edge, new sign s = − s = +

Random Walks With Signs

• Initialize sign s = +

• When traversing an edge, multiply with the edge signs

➡ the friend of my friend is my friend 
 if and we traverse a positive edge, new sign s = + s = +

➡ the enemy of my friend is my enemy 
 if and we traverse a negative edge, new sign s = + s = −

➡ the friend of my enemy is my enemy 
 if and we traverse a positive edge, new sign s = − s = −

➡ the enemy of my enemy is my friend  
 if and we traverse a negative edge, new sign s = − s = +

Random Walks With Signs

• Initialize sign s = +

• When traversing an edge, multiply with the edge signs

➡ the friend of my friend is my friend 
 if and we traverse a positive edge, new sign s = + s = +

➡ the enemy of my friend is my enemy 
 if and we traverse a negative edge, new sign s = + s = −

➡ the friend of my enemy is my enemy 
 if and we traverse a positive edge, new sign s = − s = −

➡ the enemy of my enemy is my friend  
 if and we traverse a negative edge, new sign s = − s = +

• We do not make any changes to the randomness of the walk

Some Intuition
What signs of random walks
do we expect?

V1

Some Intuition
What signs of random walks
do we expect?

V1

• If we start in and end in , 
sign should be

V1 V1
+

Some Intuition
What signs of random walks
do we expect?

V1

V2

• If we start in and end in , 
sign should be

V1 V1
+

• If we start in and end in , 
sign should be

V1 V2
−

Some Intuition
What signs of random walks
do we expect?

V1

V2

• If we start in and end in , 
sign should be

V1 V1
+

• If we start in and end in , 
sign should be

V1 V2
−

• If we start in then the probability to
end in should be very small

V1
V∖(V1 ∪ V2)

Community Vectors

Community Vectors

• SignedCommunityVector(u):

Community Vectors

• SignedCommunityVector(u):

• Initialize an empty vector m ∈ ℝn

Community Vectors

• SignedCommunityVector(u):

• Initialize an empty vector m ∈ ℝn

• Perform random walks of length starting at n log n u

Community Vectors

• SignedCommunityVector(u):

• Initialize an empty vector m ∈ ℝn

• Perform random walks of length starting at n log n u

• For each :w ∈ V

Community Vectors

• SignedCommunityVector(u):

• Initialize an empty vector m ∈ ℝn

• Perform random walks of length starting at n log n u

• For each :w ∈ V

• fraction of random walks that end at with sign m+(w) ← w +

Community Vectors

• SignedCommunityVector(u):

• Initialize an empty vector m ∈ ℝn

• Perform random walks of length starting at n log n u

• For each :w ∈ V

• fraction of random walks that end at with sign m+(w) ← w +

• fraction of random walks that end at with sign m−(w) ← w −

Community Vectors

• SignedCommunityVector(u):

• Initialize an empty vector m ∈ ℝn

• Perform random walks of length starting at n log n u

• For each :w ∈ V

• fraction of random walks that end at with sign m+(w) ← w +

• fraction of random walks that end at with sign m−(w) ← w −

• m(w) ← m+(w) − m−(w)

Community Vectors

• SignedCommunityVector(u):

• Initialize an empty vector m ∈ ℝn

• Perform random walks of length starting at n log n u

• For each :w ∈ V

• fraction of random walks that end at with sign m+(w) ← w +

• fraction of random walks that end at with sign m−(w) ← w −

• m(w) ← m+(w) − m−(w)

➡ we expect that if is on the same side as then , 
	 if is on the other side of then , and 
	 if is from a different cluster then

w u m(w) ≫ 0
w u m(w) ≪ 0
w m(w) ≈ 0

Community Vectors

• SignedCommunityVector(u):

• Initialize an empty vector m ∈ ℝn

• Perform random walks of length starting at n log n u

• For each :w ∈ V

• fraction of random walks that end at with sign m+(w) ← w +

• fraction of random walks that end at with sign m−(w) ← w −

• m(w) ← m+(w) − m−(w)

➡ we expect that if is on the same side as then , 
	 if is on the other side of then , and 
	 if is from a different cluster then

w u m(w) ≫ 0
w u m(w) ≪ 0
w m(w) ≈ 0

• Suppose that for each cluster we know
a seed-vertex

• WhichCluster(u):

• SignedCommunityVector()

• SignedCommunityVector() for all

•

• Return that is from cluster

➡ Intuition: if is from cluster , 
then the community vectors of and
should be similar

C1, …, Ck
vi ∈ Ci

mu ← u

mvi
← vi i

i* = arg min
i

min{∥mu − mvi
∥2, ∥mu + mvi

∥2}

u i*

u i*
mu mvi*

Main Technical Result
V1 V2

Main Technical Result

• Let be the signed normalized Laplacianℒ = I − D−1/2AD−1/2

V1 V2

Main Technical Result

• Let be the signed normalized Laplacianℒ = I − D−1/2AD−1/2

• Let be the orthonormal row eigenvectors of , i.e., , 
and assume that

v1, …, vn ℒ λivi = viℒ
0 ≤ λ1 ≤ ⋯ ≤ λn

V1 V2

Main Technical Result

• Let be the signed normalized Laplacianℒ = I − D−1/2AD−1/2

• Let be the orthonormal row eigenvectors of , i.e., , 
and assume that

v1, …, vn ℒ λivi = viℒ
0 ≤ λ1 ≤ ⋯ ≤ λn

➡ The vectors essentially reveal the polarized communitiesv1, …, vk

V1 V2

Main Technical Result

• Let be the signed normalized Laplacianℒ = I − D−1/2AD−1/2

• Let be the orthonormal row eigenvectors of , i.e., , 
and assume that

v1, …, vn ℒ λivi = viℒ
0 ≤ λ1 ≤ ⋯ ≤ λn

➡ The vectors essentially reveal the polarized communitiesv1, …, vk

• More formally, consider a polarized cluster ,). 
Then (if is degree-bounded, clusterable, and still simplifying a lot) for all , 
 

	 if 	 and	 if

U = (V1 V2
G i ≤ 1,…, k

vi(u) ≈ +
1

|U |
u ∈ V1 vi(u) ≈ −

1
|U |

u ∈ V2

V1 V2

Sublinear-Time Clustering Oracle for Signed Graphs
Stefan Neumann (KTH) and Pan Peng (USTC)
@StefanResearch

• We provide a sublinear-time clustering oracle that 
returns the communities of vertices in signed graphs

• We prove that it works and give new insights into 
spectral graph theory for signed random walks

• Highly scalable and works well in practice for large clusters

• We provide a new signed graph dataset with large ground-truth
communities

• Open questions:

• Give guarantees for our heuristic

• Use our theoretical insights for better practical algorithms

• What else can we do with signed random walks?

Sublinear-Time Clustering Oracle for Signed Graphs
Stefan Neumann (KTH) and Pan Peng (USTC)
@StefanResearch

• We provide a sublinear-time clustering oracle that 
returns the communities of vertices in signed graphs

• We prove that it works and give new insights into 
spectral graph theory for signed random walks

• Highly scalable and works well in practice for large clusters

• We provide a new signed graph dataset with large ground-truth
communities

• Open questions:

• Give guarantees for our heuristic

• Use our theoretical insights for better practical algorithms

• What else can we do with signed random walks?

Thank you!

