Sublinear-Time Clustering Oracle
for Signed Graphs

Stefan Neumann (KTH) and Pan Peng (USTC)

@StefanResearch

ICML’22

HE
WALLENBERG Al SO Do'l'O
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

RRRRRRRR INFRASTRUCTURE I | I

Graph Clustering

* Ubiquitous task in machine learning and
data science

Graph Clustering

* Ubiquitous task in machine learning and
data science

 Application:
Find communities in (social) networks

Graph Clustering

* Ubiquitous task in machine learning and
data science

 Application:
Find communities in (social) networks

» [ypically studied for unsigned graphs

Sighed Graphs

* Social networks can be seen as signed networks

Sighed Graphs

* Social networks can be seen as signed networks

 Each edge has a sign + or — indicating whether

Sighed Graphs

* Social networks can be seen as signed networks
 Each edge has a sign + or — indicating whether

= |nteraction was positive +

Sighed Graphs

* Social networks can be seen as signed networks
 Each edge has a sign + or — indicating whether
= |nteraction was positive +

= or negaltive —

Sighed Graphs

* Social networks can be seen as signed networks
 Each edge has a sign + or — indicating whether
= |nteraction was positive +

= or negaltive —

* Allows to detect conflicting groups
in social networks

Sighed Graphs

‘ \'

* Social networks can be seen as signed networks A \‘
 Each edge has a sign + or — indicating whether
= |nteraction was positive +

= Or

* Allows to detect conflicting groups
in social networks

Sighed Graphs

* Social networks can be seen as signed networks
 Each edge has a sign + or — indicating whether
= |nteraction was positive +

= or negaltive —

* Allows to detect conflicting groups
in social networks

Sighed Graphs

* Social networks can be seen as signed networks
 Each edge has a sign + or — indicating whether
= |nteraction was positive +

= or negaltive —

* Allows to detect conflicting groups
in social networks

= Democrats vs Republicans

Sighed Graphs

* Social networks can be seen as signed networks
 Each edge has a sign + or — indicating whether
= |nteraction was positive +

= or negaltive —

* Allows to detect conflicting groups
in social networks

= Democrats vs Republicans

= analyze trust in Bitcoin networks '

0*

Sublinear-Time Algorithms

* Real-world graphs are huge and clustering
the entire graph is often infeasible

Sublinear-Time Algorithms

* Real-world graphs are huge and clustering
the entire graph is often infeasible

e Often we do not have access to the full
graph (e.g., Twitter)

Sublinear-Time Algorithms

* Real-world graphs are huge and clustering
the entire graph is often infeasible

e Often we do not have access to the full
graph (e.g., Twitter)

= We cannot read the full graph

Sublinear-Time Algorithms ;
 Real-world graphs are huge and clustering

the entire graph is often infeasible
» Often we do not have access to the full

graph (e.g., Twitter) \\
= We cannot read the full graph \ /
 We assume query-access to the graph,

l.e., we can sample random vertices and

random neighbors

o—

SN

Sublinear-Time Algorithms ‘\
 Real-world graphs are huge and clustering

the entire graph is often infeasible
» Often we do not have access to the full

graph (e.g., Twitter) \\
= We cannot read the full graph \ /
 We assume query-access to the graph,

l.e., we can sample random vertices and

random neighbors

o—

* |n many applications we need the cluster N~
information only for a few vertices

Sublinear-Time Algorithms ‘\
 Real-world graphs are huge and clustering

the entire graph is often infeasible
» Often we do not have access to the full

graph (e.g., Twitter) \\
= We cannot read the full graph \ /
 We assume query-access to the graph,

l.e., we can sample random vertices and

random neighbors

o—

* |n many applications we need the cluster N~
information only for a few vertices

 Must be very fast and space efficient

Our Signed Oracle

Our Signed Oracle

* Our oracle data structure allows the query:
\

=\

Our Signed Oracle

* Our oracle data structure allows the query:
e (Given a vertex u,
which cluster does u belong to?
\\

s

Our Signed Oracle

* Our oracle data structure allows the query:
e (Given a vertex u,
which cluster does u belong to?
\\
* Jo classify a vertex, /
we perform a small number of signed random walks \

s

Our Signed Oracle

* Our oracle data structure allows the query:
e (Given a vertex u,
which cluster does u belong to?
\\
* Jo classify a vertex, /
we perform a small number of signed random walks \

s

Our Signed Oracle

* Our oracle data structure allows the query:
e (Given a vertex u,
which cluster does u belong to?
\\
* Jo classify a vertex, /
we perform a small number of signed random walks \

N

Our Signed Oracle

* Our oracle data structure allows the query:

 (Given a vertex u,
which cluster does u belong to?

* Jo classify a vertex,
we perform a small number of signed random walks

'\C&

Our Signed Oracle

* Our oracle data structure allows the query:
e (Given a vertex u,
which cluster does u belong to?
\\
* Jo classify a vertex, /
we perform a small number of signed random walks \

N

Q.

Our Signed Oracle

* Our oracle data structure allows the query:
e (Given a vertex u,
which cluster does u belong to?
\\
* Jo classify a vertex, /
we perform a small number of signed random walks \

3N

Our Signed Oracle

* Our oracle data structure allows the query:

 (Given a vertex u,
which cluster does u belong to?

* Jo classify a vertex,
we perform a small number of signed random walks

Our Signed Oracle

* Our oracle data structure allows the query:
e (Given a vertex u,
which cluster does u belong to?
\\
* Jo classify a vertex, /
we perform a small number of signed random walks \

s

Our Signed Oracle

* Our oracle data structure allows the query:

 (Given a vertex u,
which cluster does u belong to?

* Jo classify a vertex,
we perform a small number of signed random walks

e Each vertex can be classified in sublinear time and
space .dg&

Our Signed Oracle

* Our oracle data structure allows the query:

 (Given a vertex u,
which cluster does u belong to?

\\
* Jo classify a vertex,
we perform a small number of signed random walks

5 Esggevertex can be classified in sublinear time and .<‘~\\ é
= \ery efficient when only a few vertices need to be
classified

We Can Provably Recover Planted Clusters

O\

We Can Provably Recover Planted Clusters

O\

» Consider graph with n vertices

We Can Provably Recover Planted Clusters

O\

» Consider graph with n vertices

* Assumptions: 3
bounded degrees, O(1) clusters, “nice” planted clusters

N

X

o

We Can Provably Recover Planted Clusters

O\

» Consider graph with n vertices

* Assumptions: 3
bounded degrees, O(1) clusters, “nice” planted clusters

* Theorem (informal):
We can return the cluster index of a vertex with query time O(\/ﬁ).
The answer is (1 — €)-close to the planted clustering with

probability at least 90%. \/
Y
K\\&J

>

We Can Provably Recover Planted Clusters

O\

» Consider graph with n vertices

* Assumptions: 3
bounded degrees, O(1) clusters, “nice” planted clusters

* Theorem (informal):
We can return the cluster index of a vertex with query time 0(\/;).

The answer is (1 — €)-close to the planted clustering with
probability at least 90%.

= (Gives theoretical analysis for random walks with signs and
provides new results for spectral graph theory of signed graphs N

We Can Provably Recover Planted Clusters

O\

» Consider graph with n vertices

* Assumptions: 3
bounded degrees, O(1) clusters, “nice” planted clusters

* Theorem (informal):
We can return the cluster index of a vertex with query time 0(\/;).

The answer is (1 — €)-close to the planted clustering with
probability at least 90%.

= (Gives theoretical analysis for random walks with signs and
provides new results for spectral graph theory of signed graphs N

* Theoretical analysis for identifying conflicts, but not the sides

We Can Provably Recover Planted Clusters

» Consider graph with n vertices

* Assumptions: 3
bounded degrees, O(1) clusters, “nice” planted clusters

* Theorem (informal):
We can return the cluster index of a vertex with query time 0(\/;).

The answer is (1 — €)-close to the planted clustering with
probability at least 90%. e ———

= Gives theoretical analysis for random walks with signs and
provides new results for spectral graph theory of signed graphs §

* Theoretical analysis for identifying conflicts, but not the sides

Also Highly Practical

Also Highly Practical

* |n practice, we can identify the conflict groups!

Also Highly Practical

* |n practice, we can identify the conflict groups!

Also Highly Practical

* |n practice, we can identify the conflict groups!

* For large clusters,
our oracle has higher accuracy than baselines

Also Highly Practical

* |n practice, we can identify the conflict groups!

* For large clusters,
our oracle has higher accuracy than baselines

 Much faster than global methods if we only need to
classify a small number of vertices!

Also Highly Practical

* |n practice, we can identify the conflict groups!

* For large clusters,
our oracle has higher accuracy than baselines

 Much faster than global methods if we only need to
classify a small number of vertices!

= Each query takes <1.5 seconds on a graph with
250k vertices and 3M edges

Also Highly Practical

* |n practice, we can identify the conflict groups!

* For large clusters,
our oracle has higher accuracy than baselines

 Much faster than global methods if we only need to
classify a small number of vertices!

= Each query takes <1.5 seconds on a graph with
250k vertices and 3M edges

= Easy to parallelize

Also Highly Practical

* |n practice, we can identify the conflict groups!

* For large clusters,
our oracle has higher accuracy than baselines

 Much faster than global methods if we only need to
classify a small number of vertices!

= Each query takes <1.5 seconds on a graph with
250k vertices and 3M edges

= Easy to parallelize

 We provide a new signed graph dataset with large
ground-truth communities

How Does the Oracle Work?

0
C
Q.
(O
S
O
5
O,
-
O
n
-
-

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

Unsigned Graphs

0
C
Q.
(O
S
O
5
O,
-
O
n
-
-

0
C
Q.
(O
S
O
5
O,
-
O
n
-
-

0
C
Q.
(O
S
O
5
O,
-
O
n
-
-

Unsigned Graphs

0
C
Q.
(O
S
O
5
O,
-
O
n
-
-

0
C
Q.
(O
S
O
5
O,
-
O
n
-
-

Unsigned Graphs

0
C
Q.
(O
S
O
5
O,
-
O
n
-
-

Unsigned Graphs

Computing communities in large networks using random walks
P Pons, M Latapy - International symposium on computer and information ..., 2005 - Springer

Dense subgraphs of sparse graphs (communities), which appear in most real-world complex

networks, play an important role in many contexts. Computing them however is generally ...
vy Save Y9 Cite Cited by 2065 Related articles All 43 versions

Unsigned Graphs

Computing communities in large networks using random walks
P Pons, M Latapy - International symposium on computer and information ..., 2005 - Springer

Dense subgraphs of sparse graphs (communities), which appear in most real-world complex
networks, play an important role in many contexts. Computing them however is generally ...

v¢ Save DY Cite Cited by 2065 Related articles All 43 versions

Testing cluster structure of graphs

A Czumaj, P Peng, C Sohler - Proceedings of the forty-seventh annual ..., 2015 - dl.acm.org

We study the problem of recognizing the cluster structure of a graph in the framework of
property testing in the bounded degree model. Given a parameter €, a d-bounded degree
graph is defined to be (k, @)-clusterable, if it can be partitioned into no more than k parts,
such that the (inner) conductance of the induced subgraph on each part is at least ¢ and the
(outer) conductance of each part is at most cd, k € 4 ¢ 2, where cd, k depends only on d, k.
Our main result is a sublinear algorithm with the running time~ O (V n- poly (o, k, 1/¢)) that ...

vy Save YY Cite Cited by 35 Related articles All 7 versions

Sighed Graphs

What changes when we have
signs?

Random Walks With Signs

i

Random Walks With Signs

) \>
%i \V,

Random Walks With Signs

* |nitialize sign s = +

 When traversing an edge, multiply s with the edge sign

N\
% ; A
od:‘&

Random Walks With Signs

* |nitialize sign s = +
 When traversing an edge, multiply s with the edge sign
= the friend of my friend is my friend
if s = + and we traverse a positive edge, new sign s = -+ \\
A \/

Random Walks With Signs

* |nitialize sign s = +
 When traversing an edge, multiply s with the edge sign
= the friend of my friend is my friend
if s = + and we traverse a positive edge, new sign s = -+ \\
o

Random Walks With Signs

* Initialize sign s = +
* When traversing an edge, multiply s with the edge sign

= the friend of my friend is my friend
if s = + and we traverse a positive edge, new sign s = -+

= the enemy of my friend is my enemy
if s = 4+ and we traverse a edge, new sign

Random Walks With Signs

* Initialize sign s = +
* When traversing an edge, multiply s with the edge sign

= the friend of my friend is my friend
if s = + and we traverse a positive edge, new sign s = -+

= the enemy of my friend is my enemy
if s = 4+ and we traverse a edge, new sign

Random Walks With Signs

* Initialize sign s = +
* When traversing an edge, multiply s with the edge sign

= the friend of my friend is my friend
if s = + and we traverse a positive edge, new sign s = -+

= the enemy of my friend is my enemy
if s = 4+ and we traverse a edge, new sign

= the friend of my enemy is my enemy
If and we traverse a positive edge, new sign

Random Walks With Signs

* Initialize sign s = +
* When traversing an edge, multiply s with the edge sign

= the friend of my friend is my friend
if s = + and we traverse a positive edge, new sign s = -+

= the enemy of my friend is my enemy
if s = 4+ and we traverse a edge, new sign

= the friend of my enemy is my enemy
If and we traverse a positive edge, new sign

>

K'Sy

Random Walks With Signs

* Initialize sign s = +
* When traversing an edge, multiply s with the edge sign

= the friend of my friend is my friend
if s = + and we traverse a positive edge, new sign s = -+

= the enemy of my friend is my enemy
if s = 4+ and we traverse a edge, new sign

= the friend of my enemy is my enemy
If and we traverse a positive edge, new sign

= the enemy of my enemy is my friend
it and we traverse a edge, new sign s = +

Random Walks With Signs

* Initialize sign s = +
* When traversing an edge, multiply s with the edge sign

= the friend of my friend is my friend
if s = + and we traverse a positive edge, new sign s = -+

= the enemy of my friend is my enemy
if s = 4+ and we traverse a edge, new sign

= the friend of my enemy is my enemy
If and we traverse a positive edge, new sign

= the enemy of my enemy is my friend
it and we traverse a edge, new sign s = +

Random Walks With Signs

* Initialize sign s = +
« When traversing an edge, multiply s with the edge sign

= the friend of my friend is my friend
if s = + and we traverse a positive edge, new sign s = -+

= the enemy of my friend is my enemy
if s = 4+ and we traverse a edge, new sign

= the friend of my enemy is my enemy
If and we traverse a positive edge, new sign

= the enemy of my enemy is my friend
it and we traverse a edge, new sign s = +

 We do not make any changes to the randomness of the walk

Some Intuition

What signs of random walks
do we expect?

N\
% N

o

Vi

Some Intuition

What signs of random walks
do we expect?

» Ifwestartin V, andendin V,,
sign should be +

Some Intuition

What signs of random walks
do we expect?

» Ifwestartin V, andendin V,,
sign should be +

e If westartin V/, andendin !/,
sign should be

Some Intuition

What signs of random walks
do we expect?

» Ifwestartin V, andendin V,,
sign should be +

e If westartin V/, andendin !/,
sign should be

« If we start in V/, then the probability to
end in V\(V, U V,) should be very small

Community Vectors

Community Vectors

o SignedCommunityVector(u):

Community Vectors

o SignedCommunityVector(u):

» Initialize an empty vector m € R”"

Community Vectors

CommunityVector(u):
» Initialize an empty vector m € R”"
 Perform 4/n random walks of length log n starting at u
>
o
\/
—%

Community Vectors

CommunityVector(u):
» Initialize an empty vector m € R”"
 Perform 4/n random walks of length log n starting at u
« Foreachw € V- \\
A \/
—%:

Community Vectors

. CommunityVector(u):
» Initialize an empty vector m € R”"
 Perform 4/n random walks of length log n starting at u
« Foreachw € V-
e m_(w) « fraction of random walks that end at w with sign + r
—%:

Community Vectors

. CommunityVector(u):
» Initialize an empty vector m € R”"
 Perform 4/n random walks of length log n starting at u
« Foreachw € V-
e m_(w) « fraction of random walks that end at w with sign + r
. « fraction of random walks that end at w with sign
—%

Community Vectors

. CommunityVector(u):
» Initialize an empty vector m € R”"
 Perform 4/n random walks of length log n starting at u
« Foreachw € V-
e m_(w) « fraction of random walks that end at w with sign + r
. « fraction of random walks that end at w with sign
—%

» m(w) < m (W) =

Community Vectors

. CommunityVector(u):
» Initialize an empty vector m € R”"
 Perform 4/n random walks of length log n starting at u
« Foreachw € V-
e m_(w) « fraction of random walks that end at w with sign +
. « fraction of random walks that end at w with sign
o« m(w) < m (W) —

= \we expect that if w is on the same side as u then m(w) > 0,
if W is on the other side of i then m(w) < 0, and
if w is from a different cluster then m(w) ~ 0O

Community Vectors

« Suppose that for each cluster C, ..., C; we know

- d-vertex v. € C.
° CommunityVector(u): a seed-vertex v; € (;

« Initialize an empty vector m € R” * WhichCluster(u):
 Perform 4/n random walks of length log n starting at u » m,, < SignedCommunityVector(1)

« Foreachw € V- . m,, < SignedCommunityVector(v) for all i

e m_(w) « fraction of random walks that end at w with sign +

. IF = arg min min{ ”mu - mviH2’ Hmu T mv,-HZ}
l

o < fraction of random walks that end at w with sign

e Return that u is from cluster ;"
o m(w) « m,(w) —

= |ntuition: if u is from cluster i*,
then the community vectors of m, and m,,

should be similar

= \we expect that if w is on the same side as u then m(w) > 0,
if W is on the other side of i then m(w) < 0, and
if w is from a different cluster then m(w) ~ 0O

Main Technical Result

v
Main Technical Result 1

. Let Z =1— D Y?AD"? be the signed normalized Laplacian ;

*e

Je

Main Technical Result

. Let Z =1— D Y?AD"? be the signed normalized Laplacian : j

 Letv,,..., v, bethe orthonormal row eigenvectors of £, i.e., AV. = v.Z,
and assumethat) < /4, < --- < 4,

Main Technical Result

. Let Z =1— D Y?AD"? be the signed normalized Laplacian

¢ Let Vl’ . o

., V. be the orthonormal row eigenvectors of £, i.e., 4.V, = V.=,

and assumethat) < /4, < --- < 4,

= [he vectors v, ..., V, essentially reveal the polarized communities

Main Technical Result

. Let Z =1— D Y?AD"? be the signed normalized Laplacian ; ;7

 Letv,,..., v, bethe orthonormal row eigenvectors of £, i.e., AV. = v.Z,
and assumethat) < /4, < --- < 4,

= [he vectors v, ..., V, essentially reveal the polarized communities

 More formally, consider a polarized cluster U = (V, V).
Then (if G is degree-bounded, clusterable, and still simplifying a lot) for all 1 S 1, cees k,

|
V() ~ +m ifu eV, and vi(u) & if

Sublinear-Time Clustering Oracle for Signed Graphs

Stefan Neumann (KTH) and Pan Peng (USTC)

@StefanResearch

* We provide a sublinear-time clustering oracle that
returns the communities of vertices in signed graphs

* We prove that it works and give new insights into
spectral graph theory for signed random walks

* Highly scalable and works well in practice for large clusters

 We provide a new signed graph dataset with large ground-truth
communities

* Open questions:
* Give guarantees for our heuristic
e Use our theoretical insights for better practical algorithms

 What else can we do with signed random walks?

Sublinear-Time Clustering Oracle for Signed Graphs

Stefan Neumann (KTH) and Pan Peng (USTC)

@StefanResearch

* We provide a sublinear-time clustering oracle that
returns the communities of vertices in signed graphs

* We prove that it works and give new insights into
spectral graph theory for signed random walks

* Highly scalable and works well in practice for large clusters

 We provide a new signed graph dataset with large ground-truth
communities

* Open questions:
* Give guarantees for our heuristic
e Use our theoretical insights for better practical algorithms

 What else can we do with signed random walks?

