Sublinear-Time Clustering Oracle for Signed Graphs Stefan Neumann (KTH) and Pan Peng (USTC) @StefanResearch

ICML'22

RESEARCH INFRASTRUCTURE

Graph Clustering

 Ubiquitous task in machine learning and data science

Graph Clustering

- Ubiquitous task in machine learning and data science
- Application: Find communities in (social) networks

Graph Clustering

- Ubiquitous task in machine learning and data science
- Application: Find communities in (social) networks
- Typically studied for unsigned graphs

Social networks can be seen as signed networks

- Social networks can be seen as signed networks
- Each edge has a sign + or indicating whether

- Social networks can be seen as signed networks
- Each edge has a sign + or indicating whether

interaction was positive +

- Social networks can be seen as signed networks
- Each edge has a sign + or indicating whether

➡ interaction was positive +

- Social networks can be seen as signed networks
- Each edge has a sign + or indicating whether

interaction was positive +

 \rightarrow or negative –

Allows to detect conflicting groups
in social networks

- Social networks can be seen as signed networks
- Each edge has a sign + or indicating whether

➡ interaction was positive +

 \rightarrow or negative –

Allows to detect conflicting groups
in social networks

- Social networks can be seen as signed networks
- Each edge has a sign + or indicating whether

➡ interaction was positive +

 \rightarrow or negative –

Allows to detect conflicting groups
in social networks

- Social networks can be seen as signed networks
- Each edge has a sign + or indicating whether

➡ interaction was positive +

⇒ or negative –

Allows to detect conflicting groups
in social networks

Democrats vs Republicans

- Social networks can be seen as signed networks
- Each edge has a sign + or indicating whether

➡ interaction was positive +

→ or negative –

Allows to detect conflicting groups
in social networks

Democrats vs Republicans

analyze trust in Bitcoin networks

• Real-world graphs are huge and clustering the entire graph is often infeasible

- Real-world graphs are huge and clustering the entire graph is often infeasible
- Often we do not have access to the full graph (e.g., Twitter)

- Real-world graphs are huge and clustering the entire graph is often infeasible
- Often we do not have access to the full graph (e.g., Twitter)

We cannot read the full graph

- Real-world graphs are huge and clustering the entire graph is often infeasible
- Often we do not have access to the full graph (e.g., Twitter)

We cannot read the full graph

 We assume query-access to the graph, i.e., we can sample random vertices and random neighbors

- Real-world graphs are huge and clustering the entire graph is often infeasible
- Often we do not have access to the full graph (e.g., Twitter)

We cannot read the full graph

- We assume query-access to the graph, i.e., we can sample random vertices and random neighbors
- In many applications we need the cluster information only for a few vertices

- Real-world graphs are huge and clustering the entire graph is often infeasible
- Often we do not have access to the full graph (e.g., Twitter)

We cannot read the full graph

- We assume query-access to the graph, i.e., we can sample random vertices and random neighbors
- In many applications we need the cluster information only for a few vertices
- Must be very fast and space efficient

Our oracle data structure allows the query:

- Our oracle data structure allows the query:
 - Given a vertex u, which cluster does *u* belong to?

- Our oracle data structure allows the query: \bullet
 - Given a vertex u, which cluster does u belong to?
- To classify a vertex, we perform a small number of signed random walks

- Our oracle data structure allows the query:
 - Given a vertex u, which cluster does u belong to?
- To classify a vertex, we perform a small number of signed random walks

- Our oracle data structure allows the query: D
 - Given a vertex u, which cluster does u belong to?
- To classify a vertex, we perform a small number of signed random walks

- Our oracle data structure allows the query: 0
 - Given a vertex u, which cluster does u belong to?
- To classify a vertex, we perform a small number of signed random walks

- Our oracle data structure allows the query:
 - Given a vertex u, which cluster does u belong to?
- To classify a vertex, we perform a small number of signed random walks

- Our oracle data structure allows the query: 0
 - Given a vertex u, which cluster does u belong to?
- To classify a vertex, we perform a small number of signed random walks

- Our oracle data structure allows the query:
 - Given a vertex u, which cluster does u belong to?
- To classify a vertex, we perform a small number of signed random walks

- Our oracle data structure allows the query: \bullet
 - Given a vertex u, which cluster does u belong to?
- To classify a vertex, we perform a small number of signed random walks

- Our oracle data structure allows the query:
 - Given a vertex u, which cluster does u belong to?
- To classify a vertex, we perform a small number of signed random walks
- Each vertex can be classified in sublinear time and space

- Our oracle data structure allows the query:
 - Given a vertex u, which cluster does u belong to?
- To classify a vertex, we perform a small number of signed random walks
- Each vertex can be classified in sublinear time and space

Very efficient when only a few vertices need to be classified

Consider graph with *n* vertices ightarrow

- Consider graph with *n* vertices \bullet
- Assumptions: bounded degrees, $\tilde{O}(1)$ clusters, "nice" planted clusters

- Consider graph with *n* vertices
- Assumptions: bounded degrees, $\tilde{O}(1)$ clusters, "nice" planted clusters
- Theorem (informal):

We can return the cluster index of a vertex with query time $\tilde{O}(\sqrt{n})$. The answer is $(1 - \varepsilon)$ -close to the planted clustering with probability at least 90%.

We Can Provably Recover Planted Clusters

- Consider graph with *n* vertices
- Assumptions: bounded degrees, $\tilde{O}(1)$ clusters, "nice" planted clusters
- Theorem (informal):

We can return the cluster index of a vertex with query time $\tilde{O}(\sqrt{n})$. The answer is $(1 - \varepsilon)$ -close to the planted clustering with probability at least 90%.

Gives theoretical analysis for random walks with signs and provides new results for spectral graph theory of signed graphs

We Can Provably Recover Planted Clusters

- Consider graph with *n* vertices
- Assumptions: bounded degrees, $\tilde{O}(1)$ clusters, "nice" planted clusters
- Theorem (informal):

We can return the cluster index of a vertex with query time $\tilde{O}(\sqrt{n})$. The answer is $(1 - \varepsilon)$ -close to the planted clustering with probability at least 90%.

- Gives theoretical analysis for random walks with signs and provides new results for spectral graph theory of signed graphs
- Theoretical analysis for identifying conflicts, but not the sides \bullet

We Can Provably Recover Planted Clusters

- Consider graph with n vertices
- Assumptions: bounded degrees, $\tilde{O}(1)$ clusters, "nice" planted clusters
- Theorem (informal):

We can return the cluster index of a vertex with query time $\tilde{O}(\sqrt{n})$. The answer is $(1 - \varepsilon)$ -close to the planted clustering with probability at least 90%.

- Gives theoretical analysis for random walks with signs and provides new results for spectral graph theory of signed graphs
- Theoretical analysis for identifying conflicts, but not the sides \bullet

• In practice, we can identify the conflict groups!

• In practice, we can identify the conflict groups!

- In practice, we can identify the conflict groups!
- For large clusters, our oracle has higher accuracy than baselines

- In practice, we can identify the conflict groups!
- For large clusters, our oracle has higher accuracy than baselines
- Much faster than global methods if we only need to classify a small number of vertices!

- In practice, we can identify the conflict groups!
- For large clusters, our oracle has higher accuracy than baselines
- Much faster than global methods if we only need to classify a small number of vertices!
 - ➡ Each query takes ≤1.5 seconds on a graph with 250k vertices and 3M edges

- In practice, we can identify the conflict groups!
- For large clusters, our oracle has higher accuracy than baselines
- Much faster than global methods if we only need to classify a small number of vertices!
 - ➡ Each query takes ≤1.5 seconds on a graph with 250k vertices and 3M edges
 - Easy to parallelize

- In practice, we can identify the conflict groups!
- For large clusters, our oracle has higher accuracy than baselines
- Much faster than global methods if we only need to classify a small number of vertices!
 - ➡ Each query takes ≤1.5 seconds on a graph with 250k vertices and 3M edges

Easy to parallelize

We provide a new signed graph dataset with large ground-truth communities

How Does the Oracle Work?

Computing communities in large networks using random walks P Pons, M Latapy - International symposium on computer and information ..., 2005 - Springer Dense subgraphs of sparse graphs (communities), which appear in most real-world complex networks, play an important role in many contexts. Computing them however is generally ... ☆ Save ワワ Cite Cited by 2065 Related articles All 43 versions

Computing communities in large networks using random walks P Pons, M Latapy - International symposium on computer and information ..., 2005 - Springer Dense subgraphs of sparse graphs (communities), which appear in most real-world complex networks, play an important role in many contexts. Computing them however is generally ... ☆ Save 57 Cite Cited by 2065 Related articles All 43 versions

Testing cluster structure of graphs

A Czumaj, P Peng, C Sohler - Proceedings of the forty-seventh annual ..., 2015 - dl.acm.org We study the problem of recognizing the cluster structure of a graph in the framework of property testing in the bounded degree model. Given a parameter ε, a d-bounded degree graph is defined to be (k, φ)-clusterable, if it can be partitioned into no more than k parts, such that the (inner) conductance of the induced subgraph on each part is at least φ and the (outer) conductance of each part is at most cd, k ε 4 φ 2, where cd, k depends only on d, k. Our main result is a sublinear algorithm with the running time $\sim O(\sqrt{n} \cdot poly(\phi, k, 1/\epsilon))$ that ... ☆ Save ፵ Cite Cited by 35 Related articles All 7 versions

Signed Graphs

What changes when we have signs?

• Initialize sign s = +

- Initialize sign s = +
- When traversing an edge, multiply *s* with the edge sign

- Initialize sign s = +
- When traversing an edge, multiply *s* with the edge sign
 - the friend of my friend is my friend if s = + and we traverse a positive edge, new sign s = +

- Initialize sign s = +
- When traversing an edge, multiply *s* with the edge sign
 - the friend of my friend is my friend if s = + and we traverse a positive edge, new sign s = +

- Initialize sign s = +
- When traversing an edge, multiply s with the edge sign
 - the friend of my friend is my friend if s = + and we traverse a positive edge, new sign s = +
 - the enemy of my friend is my enemy if s = + and we traverse a negative edge, new sign s = -

- Initialize sign s = +
- When traversing an edge, multiply *s* with the edge sign
 - the friend of my friend is my friend if s = + and we traverse a positive edge, new sign s = +
 - the enemy of my friend is my enemy if s = + and we traverse a negative edge, new sign s = -

- Initialize sign s = +
- When traversing an edge, multiply *s* with the edge sign
 - the friend of my friend is my friend if s = + and we traverse a positive edge, new sign s = +
 - the enemy of my friend is my enemy if s = + and we traverse a negative edge, new sign s = -
 - the friend of my enemy is my enemy if s = - and we traverse a positive edge, new sign s = -

- Initialize sign s = +
- When traversing an edge, multiply *s* with the edge sign
 - the friend of my friend is my friend if s = + and we traverse a positive edge, new sign s = +
 - the enemy of my friend is my enemy if s = + and we traverse a negative edge, new sign s = -
 - the friend of my enemy is my enemy if s = - and we traverse a positive edge, new sign s = -

- Initialize sign s = +
- When traversing an edge, multiply *s* with the edge sign
 - the friend of my friend is my friend if s = + and we traverse a positive edge, new sign s = +
 - the enemy of my friend is my enemy if s = + and we traverse a negative edge, new sign s = -
 - the friend of my enemy is my enemy if s = - and we traverse a positive edge, new sign s = -
 - the enemy of my enemy is my friend if s = - and we traverse a negative edge, new sign s = +

- Initialize sign s = +
- When traversing an edge, multiply *s* with the edge sign
 - the friend of my friend is my friend if s = + and we traverse a positive edge, new sign s = +
 - the enemy of my friend is my enemy if s = + and we traverse a negative edge, new sign s = -
 - the friend of my enemy is my enemy if s = - and we traverse a positive edge, new sign s = -
 - the enemy of my enemy is my friend if s = - and we traverse a negative edge, new sign s = +

- Initialize sign s = +
- When traversing an edge, multiply s with the edge sign
 - the friend of my friend is my friend if s = + and we traverse a positive edge, new sign s = +
 - the enemy of my friend is my enemy if s = + and we traverse a negative edge, new sign s = -
 - the friend of my enemy is my enemy if s = - and we traverse a positive edge, new sign s = -
 - the enemy of my enemy is my friend if s = - and we traverse a negative edge, new sign s = +
- We do not make any changes to the randomness of the walk

• If we start in V_1 and end in V_1 , sign should be +

- If we start in V_1 and end in V_1 , sign should be +
- If we start in V_1 and end in V_2 , sign should be —

- If we start in V_1 and end in V_1 , sign should be +
- If we start in V_1 and end in V_2 , sign should be —
- If we start in V_1 then the probability to end in $V \setminus (V_1 \cup V_2)$ should be very small

• **Signed**CommunityVector(u):

- **SignedCommunityVector(u)**:
 - Initialize an empty vector $m \in \mathbb{R}^n$

- **Signed**CommunityVector(u):
 - Initialize an empty vector $m \in \mathbb{R}^n$
 - Perform \sqrt{n} random walks of length $\log n$ starting at u

- **Signed**CommunityVector(u):
 - Initialize an empty vector $m \in \mathbb{R}^n$
 - Perform \sqrt{n} random walks of length $\log n$ starting at u
 - For each $w \in V$:

- **Signed**CommunityVector(u):
 - Initialize an empty vector $m \in \mathbb{R}^n$
 - Perform \sqrt{n} random walks of length $\log n$ starting at u
 - For each $w \in V$:
 - $m_+(w) \leftarrow$ fraction of random walks that end at w with sign +

- **Signed**CommunityVector(u):
 - Initialize an empty vector $m \in \mathbb{R}^n$
 - Perform \sqrt{n} random walks of length $\log n$ starting at u
 - For each $w \in V$:
 - $m_+(w) \leftarrow$ fraction of random walks that end at w with sign +
 - $m_{(w)} \leftarrow$ fraction of random walks that end at w with sign –

- **Signed**CommunityVector(u):
 - Initialize an empty vector $m \in \mathbb{R}^n$
 - Perform \sqrt{n} random walks of length $\log n$ starting at u
 - For each $w \in V$:
 - $m_+(w) \leftarrow$ fraction of random walks that end at w with sign +
 - $m_{(w)} \leftarrow$ fraction of random walks that end at w with sign –
 - $m(w) \leftarrow m_+(w) m_-(w)$

- SignedCommunityVector(u):
 - Initialize an empty vector $m \in \mathbb{R}^n$
 - Perform \sqrt{n} random walks of length $\log n$ starting at u
 - For each $w \in V$:
 - $m_+(w) \leftarrow$ fraction of random walks that end at w with sign +
 - $m_{(w)} \leftarrow$ fraction of random walks that end at w with sign –
 - $m(w) \leftarrow m_+(w) m_-(w)$

 \Rightarrow we expect that if w is on the same side as u then $m(w) \gg 0$, if w is on the other side of u then $m(w) \ll 0$, and if w is from a different cluster then $m(w) \approx 0$

- SignedCommunityVector(u):
 - Initialize an empty vector $m \in \mathbb{R}^n$
 - Perform \sqrt{n} random walks of length $\log n$ starting at u
 - For each $w \in V$:
 - $m_+(w) \leftarrow$ fraction of random walks that end at w with sign +
 - $m_{(w)} \leftarrow$ fraction of random walks that end at w with sign
 - $m(w) \leftarrow m_{\perp}(w) m_{\perp}(w)$

 \Rightarrow we expect that if w is on the same side as u then $m(w) \gg 0$, if w is on the other side of u then $m(w) \ll 0$, and if w is from a different cluster then $m(w) \approx 0$

- Suppose that for each cluster C_1, \ldots, C_k we know a seed-vertex $v_i \in C_i$
- WhichCluster(u):
 - $m_{\mu} \leftarrow \text{SignedCommunityVector}(u)$
 - $m_{v_i} \leftarrow \text{SignedCommunityVector}(v_i)$ for all i
 - $i^* = \arg\min\min\{\|m_u m_{v_i}\|_2, \|m_u + m_{v_i}\|_2\}$
 - Return that u is from cluster i^*
- \rightarrow Intuition: if *u* is from cluster i^* , then the community vectors of m_{u} and $m_{v,*}$ should be similar

 V_1

• Let $\mathscr{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ be the signed normalized Laplacian

- Let $\mathscr{L} = \mathbf{I} \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ be the signed normalized Laplacian
- Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be the orthonormal row eigenvectors of \mathcal{L} , i.e., $\lambda_i \mathbf{v}_i = \mathbf{v}_i \mathcal{L}$, and assume that $0 \leq \lambda_1 \leq \cdots \leq \lambda_n$

- Let $\mathscr{L} = \mathbf{I} \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ be the signed normalized Laplacian
- Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be the orthonormal row eigenvectors of \mathcal{L} , i.e., $\lambda_i \mathbf{v}_i = \mathbf{v}_i \mathcal{L}$, and assume that $0 \leq \lambda_1 \leq \cdots \leq \lambda_n$

 \blacksquare The vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ essentially reveal the polarized communities

- Let $\mathscr{L} = \mathbf{I} \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ be the signed normalized Laplacian
- Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be the orthonormal row eigenvectors of \mathcal{L} , i.e., $\lambda_i \mathbf{v}_i = \mathbf{v}_i \mathcal{L}$, and assume that $0 \leq \lambda_1 \leq \cdots \leq \lambda_n$
- \blacksquare The vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ essentially reveal the polarized communities
- More formally, consider a polarized cluster $U = (V_1, V_2)$. Then (if G is degree-bounded, clusterable, and still simplifying a lot) for all $i \leq 1, \ldots, k$,

$$\mathbf{v}_i(u) \approx + \frac{1}{|U|} \text{ if } u \in V_1 \quad \text{ar}$$

 $\mathbf{v}_i(u) \approx -\frac{1}{|U|} \text{ if } u \in V_2$ nd

Sublinear-Time Clustering Oracle for Signed Graphs

Stefan Neumann (KTH) and Pan Peng (USTC) @StefanResearch

- We provide a sublinear-time clustering oracle that returns the communities of vertices in signed graphs
- We prove that it works and give new insights into spectral graph theory for signed random walks
- Highly scalable and works well in practice for large clusters
- We provide a new signed graph dataset with large ground-truth communities
- Open questions:
 - Give guarantees for our heuristic
 - Use our theoretical insights for better practical algorithms
 - What else can we do with signed random walks?

Sublinear-Time Clustering Oracle for Signed Graphs

Stefan Neumann (KTH) and Pan Peng (USTC) @StefanResearch

- We provide a sublinear-time clustering oracle that returns the communities of vertices in signed graphs
- We prove that it works and give new insights into spectral graph theory for signed random walks
- Highly scalable and works well in practice for large clusters
- We provide a new signed graph dataset with large ground-truth communities
- Open questions:
 - Give guarantees for our heuristic
 - Use our theoretical insights for better practical algorithms
 - What else can we do with signed random walks?

Thank you!

