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Signed Graphs

• Social networks can be seen as signed networks

• Each edge has a sign  or  indicating whether+ −

➡ interaction was positive +

➡ or negative −

• Allows to detect conflicting groups 
in social networks

➡ Democrats vs Republicans

➡ analyze trust in Bitcoin networks
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Sublinear-Time Algorithms
• Real-world graphs are huge and clustering 

the entire graph is often infeasible

• Often we do not have access to the full 
graph (e.g., Twitter)

➡ We cannot read the full graph

• We assume query-access to the graph, 
i.e., we can sample random vertices and 
random neighbors

• In many applications we need the cluster 
information only for a few vertices

• Must be very fast and space efficient
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Our Signed Oracle

• Our oracle data structure allows the query:

• Given a vertex , 
which cluster does  belong to?

u
u

• To classify a vertex, 
we perform a small number of signed random walks

• Each vertex can be classified in sublinear time and 
space

➡ Very efficient when only a few vertices need to be 
classified
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Also Highly Practical

• In practice, we can identify the conflict groups!

• For large clusters, 
our oracle has higher accuracy than baselines

• Much faster than global methods if we only need to 
classify a small number of vertices!

➡ Each query takes ≤1.5 seconds on a graph with 
250k vertices and 3M edges

➡ Easy to parallelize

• We provide a new signed graph dataset with large 
ground-truth communities
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What changes when we have 
signs?

Signed Graphs
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Random Walks With Signs

• Initialize sign s = +

• When traversing an edge, multiply  with the edge signs

➡ the friend of my friend is my friend 
 if  and we traverse a positive edge, new sign s = + s = +

➡ the enemy of my friend is my enemy 
 if  and we traverse a negative edge, new sign s = + s = −

➡ the friend of my enemy is my enemy 
 if  and we traverse a positive edge, new sign s = − s = −

➡ the enemy of my enemy is my friend  
 if  and we traverse a negative edge, new sign s = − s = +

• We do not make any changes to the randomness of the walk
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Some Intuition
What signs of random walks 
do we expect?

V1

V2

• If we start in  and end in , 
sign should be 

V1 V1
+

• If we start in  and end in , 
sign should be 

V1 V2
−

• If we start in  then the probability to 
end in  should be very small

V1
V∖(V1 ∪ V2)
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• SignedCommunityVector(u):

• Initialize an empty vector m ∈ ℝn

• Perform  random walks of length  starting at n log n u

• For each :w ∈ V

•   fraction of random walks that end at  with sign m+(w) ← w +

•   fraction of random walks that end at  with sign m−(w) ← w −

•     m(w) ← m+(w) − m−(w)

➡ we expect that if  is on the same side as  then , 
	          if  is on the other side of  then , and 
	          if  is from a different cluster then 

w u m(w) ≫ 0
w u m(w) ≪ 0
w m(w) ≈ 0

• Suppose that for each cluster  we know 
a seed-vertex 


• WhichCluster(u): 

• SignedCommunityVector( )


• SignedCommunityVector( ) for all 


•  


• Return that  is from cluster 


➡ Intuition: if  is from cluster , 
then the community vectors of  and  
should be similar

C1, …, Ck
vi ∈ Ci

mu ← u

mvi
← vi i

i* = arg min
i

min{∥mu − mvi
∥2, ∥mu + mvi

∥2}

u i*

u i*
mu mvi*
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Main Technical Result

• Let  be the signed normalized Laplacianℒ = I − D−1/2AD−1/2

• Let  be the orthonormal row eigenvectors of , i.e., , 
and assume that 

v1, …, vn ℒ λivi = viℒ
0 ≤ λ1 ≤ ⋯ ≤ λn

➡ The vectors  essentially reveal the polarized communitiesv1, …, vk

• More formally, consider a polarized cluster , ). 
Then (if  is degree-bounded, clusterable, and still simplifying a lot) for all , 
 

	  if 	 and	  if 

U = (V1 V2
G i ≤ 1,…, k

vi(u) ≈ +
1

|U |
u ∈ V1 vi(u) ≈ −

1
|U |

u ∈ V2

V1 V2
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• We provide a sublinear-time clustering oracle that 
returns the communities of vertices in signed graphs


• We prove that it works and give new insights into 
spectral graph theory for signed random walks


• Highly scalable and works well in practice for large clusters


• We provide a new signed graph dataset with large ground-truth 
communities


• Open questions:


• Give guarantees for our heuristic


• Use our theoretical insights for better practical algorithms


• What else can we do with signed random walks?

Thank you!


