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Overview

1. Consensus Multiplicative Weights Update: new algorithm with
local last-iterate convergence guarantees to Nash Equilibria for
zero-sum bimatrix games.

- generalizes consensus optimization from the unconstrained to the
constrained case.

2. Learning the coefficients of the above update rule for general
bimatrix games (non zero-sum).
- can we learn last-iterate convergence in 2 Player games using a
featurization of such games, the game signature?



Setting

- constrained case: x, y players’ mixed strategies in probability
simplex.

- 2P bimatrix game, payoffs fi(x,y) = x"Ay, f,(x,y) = x"By.
- First focus on the zero-sum case B = —A

- Existing algorithms displaying last-iterate convergence in the
zero-sum case, with constant step-size:
- Optimistic Multiplicative Weights Update,
- Optimistic mirror descent with various projection methods.



Consensus Multiplicative Weights Update

- Naively adding to the gradient the 2" order term AAT as in the
unconstrained case does not work!

- Nash Equilibria are not fixed points

- Als typically not invertible (Rock-Paper-Scissors)

- problematic regarding the Jacobian spectral radius condition



Consensus Multiplicative Weights Update

- Define simplex-Hessians Hy := ATdiag(x)A, Hy := Adiag(y)A".

- spectrum "rescaling” sp(Hx) = sp(diag(x)AA").

- simplex-Hessians make Nash Equilibria be fixed points

- Consensus Multiplicative Weights Update (CMWU) update:

- h learning rate, e Hessian coefficient.
- Multiplicative Weights projection P

Xty = PXI (hAyt — hGHy,Xt)
Yirr = Py, (—hATxe — heHyyr)

- What about invertibility of Hy and H,?
- rock-paper-scissors still not invertible



Consensus Multiplicative Weights Update

- Definition: a matrix A is weakly V-invertible if:
XeV=AX#£0, ie Ker(A)nV={0}
- coincides with classical invertibility when A square and V = R

- We require A to be weakly Z-invertible

- Z space of vectors that sum to 0
- Rock-Paper-Scissors is weaRly Z-invertible.

- CMWU has local convergence guarantees in the zero-sum case
and performs competitively compared to existing methods.

- new proof technique based on eigenvalue perturbation



Learning Last-iterate convergence in Games

- Can we learn the update rule coefficients h and €?

- Recent research shows that the update rule needs to depend on
the nature of the game (Cheung & Piliouras, 2020).

- we need to encode/featurize the game

- We allow different coefficients for the 2 players
- 4 coefficients in total



Learning Last-iterate convergence in Games

- RL problem over trajectory 7, minimize the distance to Nash ¢:
—~ 6(x,y")
inE. g
" Z 50, y°)
- MDP state: game signature + trajectory information of both
players: distances to Nash, gradient, Hessian, payoffs.
- Policy actions. a; = (hq, hy, hieq, hoey).

- Train on mixtures of 3 components



Game decomposition

- How to featurize/encode a 2P game?
- Use linear operators p that satisfy p> = p, a.k.a. projectors.

- The whole space is the direct sum of the Kernel and Range of
any projector:

2P Games = Ker(p) & Range(p)

- For example, p; computes the zero-sum component of any 2P
game, and Id —p; its cooperative component

pe: () = 5~ fofo ~ f)



Game decomposition

- Given n commutative projectors we have:

n
2P Games = @ ﬂc,- (2" components)
Cie{Ky Rp;} i=1

- This view generalizes cyclic/transitive games in (Balduzzi, 2019)
from the zero-sum symmetric case to any 2P game, and unifies it
with trivial games of (Cheung & Piliouras, 2020).

- Application to the case n = 3 gives 8 components associated to
zero-sum/cooperative, symmetric/antisymmetric,
transitive/cyclic games.



Learning to converge to Nash Equilibria

The RL policy is able to exploit the game signature across a wide
range of game types.

Game Type Avg. Distance o Nash
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Figure 1: Learnt coefficients of gradient G, = hy and Hessian H, = —hgey, of

players k across 8 pure game components. Mean value (left). Pairwise
correlations (right).

- Gradient stronger in transitive games, Hessian stronger in cyclic
games.

- mirror behavior between zero-sum and cooperative games.
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Coefficient trajectory Shape - Pure Game components
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Figure 2: Average standardized per-episode-trajectory ("shape”) of
coefficients of gradient G, = hy, and Hessian H, = —hye,, of players k = 1,2
across game types, as a function of time t. 12



SHAP analysis
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Figure 3: SHAP importance with respect to (top) gradient learning rates
Gy = hy and (bottom) Hessian learning rates H, = —hye, for players k for the
four input groups and eight unique game types. 13



