
Consensus Multiplicative Weights Update:
Learning to Learn using Projector-based Game
Signatures

Nelson Vadori1, Rahul Savani2, Thomas Spooner1, Sumitra Ganesh1
1 J.P. Morgan AI Research
2 University of Liverpool



Overview

1. Consensus Multiplicative Weights Update: new algorithm with
local last-iterate convergence guarantees to Nash Equilibria for
zero-sum bimatrix games.

• generalizes consensus optimization from the unconstrained to the
constrained case.

2. Learning the coefficients of the above update rule for general
bimatrix games (non zero-sum).

• can we learn last-iterate convergence in 2 Player games using a
featurization of such games, the game signature?
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Setting

• constrained case: x, y players’ mixed strategies in probability
simplex.

• 2P bimatrix game, payoffs f1(x, y) = xTAy, f2(x, y) = xTBy.
• First focus on the zero-sum case B = −A

• Existing algorithms displaying last-iterate convergence in the
zero-sum case, with constant step-size:

• Optimistic Multiplicative Weights Update,
• Optimistic mirror descent with various projection methods.
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Consensus Multiplicative Weights Update

• Naively adding to the gradient the 2nd order term AAT as in the
unconstrained case does not work!

• Nash Equilibria are not fixed points

• A is typically not invertible (Rock-Paper-Scissors)

• problematic regarding the Jacobian spectral radius condition
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Consensus Multiplicative Weights Update

• Define simplex-Hessians Hx := ATdiag(x)A, Hy := Adiag(y)AT.

• spectrum ”rescaling” sp(Hx) = sp(diag(x)AAT).

• simplex-Hessians make Nash Equilibria be fixed points

• Consensus Multiplicative Weights Update (CMWU) update:
• h learning rate, ϵ Hessian coefficient.
• Multiplicative Weights projection P

xt+1 = Pxt (hAyt − hϵHytxt)
yt+1 = Pyt

(
−hATxt − hϵHxtyt

)
• What about invertibility of Hx and Hy?

• rock-paper-scissors still not invertible
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Consensus Multiplicative Weights Update

• Definition: a matrix A is weakly V-invertible if:

X ∈ V⇒ AX ̸= 0, i.e. Ker(A) ∩ V = {0}

• coincides with classical invertibility when A square and V = Rd

• We require A to be weakly Z-invertible
• Z space of vectors that sum to 0
• Rock-Paper-Scissors is weakly Z-invertible.

• CMWU has local convergence guarantees in the zero-sum case
and performs competitively compared to existing methods.

• new proof technique based on eigenvalue perturbation

5



Learning Last-iterate convergence in Games

• Can we learn the update rule coefficients h and ϵ?

• Recent research shows that the update rule needs to depend on
the nature of the game (Cheung & Piliouras, 2020).

• we need to encode/featurize the game

• We allow different coefficients for the 2 players
• 4 coefficients in total
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Learning Last-iterate convergence in Games

• RL problem over trajectory τ , minimize the distance to Nash δ:

min
π

Eπ

τ∑
t=1

δ(xt, yt)
δ(x0, y0)

• MDP state: game signature + trajectory information of both
players: distances to Nash, gradient, Hessian, payoffs.

• Policy actions. at = (h1,h2,h1ϵ1,h2ϵ2).

• Train on mixtures of 3 components
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Game decomposition

• How to featurize/encode a 2P game?

• Use linear operators ρ that satisfy ρ2 = ρ, a.k.a. projectors.

• The whole space is the direct sum of the Kernel and Range of
any projector:

2P Games = Ker(ρ)⊕ Range(ρ)

• For example, ρZ computes the zero-sum component of any 2P
game, and Id−ρZ its cooperative component

ρZ : (f1, f2) →
1
2 (f1 − f2, f2 − f1)
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Game decomposition

• Given n commutative projectors we have:

2P Games =
⊕

Ci∈{Kρi ,Rρi}

n∩
i=1

Ci (2n components)

• This view generalizes cyclic/transitive games in (Balduzzi, 2019)
from the zero-sum symmetric case to any 2P game, and unifies it
with trivial games of (Cheung & Piliouras, 2020).

• Application to the case n = 3 gives 8 components associated to
zero-sum/cooperative, symmetric/antisymmetric,
transitive/cyclic games.
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Learning to converge to Nash Equilibria

The RL policy is able to exploit the game signature across a wide
range of game types.
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Learnt coefficients - Pure components

Figure 1: Learnt coefficients of gradient Gk = hk and Hessian Hk = −hkϵk of
players k across 8 pure game components. Mean value (left). Pairwise
correlations (right).

• Gradient stronger in transitive games, Hessian stronger in cyclic
games.

• mirror behavior between zero-sum and cooperative games.
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Coefficient trajectory Shape - Pure Game components

Figure 2: Average standardized per-episode-trajectory (”shape”) of
coefficients of gradient Gk = hk and Hessian Hk = −hkϵk of players k = 1, 2
across game types, as a function of time t. 12



SHAP analysis

Figure 3: SHAP importance with respect to (top) gradient learning rates
Gk = hk and (bottom) Hessian learning rates Hk = −hkϵk for players k for the
four input groups and eight unique game types. 13


