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Goal: 
• M tries to return accurate answers to the queries (with respect to the population).
• A tries to disrupt and find queries on which M will fail.
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What is known

• Statistical validity can be preserved using 
• Differential privacy (Bassily et al., 2015)

• Transcription compression (Dwork et al. 2015a)

• Max-information (Dwork et al. 2015b)

• Typical stability (Bassily & Freund, 2016)

• Universal conditional mutual information (Steinke & Zakynthinou 2020)

• All of which are heavily based on the i.i.d assumption.
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Learning with correlated observations

• Classical statistics (Pearson, 1895; Terence  1990)

• Mixing Markov chains (Marton, 1996; Kontorovich and Raginsky, 2017)

• Dobrushin condition (Dagan et al. 2019)





Our 
Goal



Adaptive 
data 
analysis

Correlated 
dataOur 

Goal



We do this in two ways 



We do this in two ways 

Differential Privacy



We do this in two ways 

Gibbs dependency

𝜓 𝜇 ≔ sup
𝑥∈𝒳𝑛

𝔼𝑖 𝜇𝑖 ⋅ − 𝜇𝑖 ⋅ 𝑥−𝑖
𝑇𝑉

.

𝜇 has 𝜓-Gibbs dependency if 𝜓 𝜇 ≤ 𝜓.

Differential Privacy



We do this in two ways 

Gibbs dependency

𝜓 𝜇 ≔ sup
𝑥∈𝒳𝑛

𝔼𝑖 𝜇𝑖 ⋅ − 𝜇𝑖 ⋅ 𝑥−𝑖
𝑇𝑉

.

𝜇 has 𝜓-Gibbs dependency if 𝜓 𝜇 ≤ 𝜓.

Theorem

If 𝜓(𝜇) is bounded, differentially private 
mechanisms exhibit generalization in the adaptive 
setting

Differential Privacy



We do this in two ways 

Gibbs dependency

𝜓 𝜇 ≔ sup
𝑥∈𝒳𝑛

𝔼𝑖 𝜇𝑖 ⋅ − 𝜇𝑖 ⋅ 𝑥−𝑖
𝑇𝑉

.

𝜇 has 𝜓-Gibbs dependency if 𝜓 𝜇 ≤ 𝜓.

Theorem

If 𝜓(𝜇) is bounded, differentially private 
mechanisms exhibit generalization in the adaptive 
setting

This is tight

Differential Privacy



We do this in two ways 

Gibbs dependency

𝜓 𝜇 ≔ sup
𝑥∈𝒳𝑛

𝔼𝑖 𝜇𝑖 ⋅ − 𝜇𝑖 ⋅ 𝑥−𝑖
𝑇𝑉

.

𝜇 has 𝜓-Gibbs dependency if 𝜓 𝜇 ≤ 𝜓.

Theorem

If 𝜓(𝜇) is bounded, differentially private 
mechanisms exhibit generalization in the adaptive 
setting

This is tight

And can be applied to Markov chains!

Differential Privacy



We do this in two ways 

Gibbs dependency

𝜓 𝜇 ≔ sup
𝑥∈𝒳𝑛

𝔼𝑖 𝜇𝑖 ⋅ − 𝜇𝑖 ⋅ 𝑥−𝑖
𝑇𝑉

.

𝜇 has 𝜓-Gibbs dependency if 𝜓 𝜇 ≤ 𝜓.

Theorem

If 𝜓(𝜇) is bounded, differentially private 
mechanisms exhibit generalization in the adaptive 
setting

This is tight

And can be applied to Markov chains!

Differential Privacy Transcript Compression



We do this in two ways 

Gibbs dependency

𝜓 𝜇 ≔ sup
𝑥∈𝒳𝑛

𝔼𝑖 𝜇𝑖 ⋅ − 𝜇𝑖 ⋅ 𝑥−𝑖
𝑇𝑉

.

𝜇 has 𝜓-Gibbs dependency if 𝜓 𝜇 ≤ 𝜓.

Theorem

If 𝜓(𝜇) is bounded, differentially private 
mechanisms exhibit generalization in the adaptive 
setting

This is tight

And can be applied to Markov chains!

Definition (Bassily and Freund (2016))

For a query q and distribution 𝜇, we denote by 
𝛾(𝑞, 𝜇, 𝛿) the length of the confidence interval 
around the expectation of q, with confidence level 
1 − 𝛿

Differential Privacy Transcript Compression



We do this in two ways 

Gibbs dependency

𝜓 𝜇 ≔ sup
𝑥∈𝒳𝑛

𝔼𝑖 𝜇𝑖 ⋅ − 𝜇𝑖 ⋅ 𝑥−𝑖
𝑇𝑉

.

𝜇 has 𝜓-Gibbs dependency if 𝜓 𝜇 ≤ 𝜓.

Theorem

If 𝜓(𝜇) is bounded, differentially private 
mechanisms exhibit generalization in the adaptive 
setting

This is tight

And can be applied to Markov chains!

Definition (Bassily and Freund (2016))

For a query q and distribution 𝜇, we denote by 
𝛾(𝑞, 𝜇, 𝛿) the length of the confidence interval 
around the expectation of q, with confidence level 
1 − 𝛿

Theorem

We can efficiently and adaptively answer k 
queries with 𝛼 + 𝛾(𝑞𝑖 , 𝜇, 𝛿) accuracy  w.h.p
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• More types correlations 



See you in the poster session

Thank you for listening


