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Goal:
* M tries to return accurate answers to the queries (with respect to the population).
* A tries to disrupt and find queries on which M will fail.
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 All of which are heavily based on the i.i.d assumption.
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* Classical statistics (Pearson, 1895; Terence 1990)
¢ Mixing Markov chains (Marton, 1996; Kontorovich and Raginsky, 2017)
e Dobrushin condition (Dagan et al. 2019)
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Theorem

For a query g and distribution 1, we denote by
v(q, 1, 6) the length of the confidence interval
around the expectation of g, with confidence level
1-6

If Y(u) is bounded, differentially private
mechanisms exhibit generalization in the adaptive
setting

This is tight

And can be applied to Markov chains!
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Theorem

We can efficiently and adaptively answer k
queries with a + y(q;, 1, ) accuracy w.h.p
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* More tools for this regime
* More applications
* More types correlations



Thank you for listening

See you in the poster session



