

Surrogate Likelihoods for Variational Annealed Importance Sampling

Martin Jankowiak Du Phan

ICML 2022

Consider a global latent variable model:

$$p_{\theta}(\mathcal{D}, \mathbf{z}) = p_{\theta}(\mathbf{z}) \prod_{n=1}^N p_{\theta}(y_n | \mathbf{z}, \mathbf{x}_n)$$

dataset latent variable

How do we approximate the posterior?

$$p_{\theta}(\mathbf{z} | \mathcal{D})$$

How do we compute the evidence?

$$p_{\theta}(\mathcal{D}) = \int d\mathbf{z} p_{\theta}(\mathcal{D}, \mathbf{z})$$

Variational Inference

Asymptotically **biased**

Does estimate evidence

Does support amortization

Does support subsampling

Does support model learning

MCMC

Asymptotically **unbiased**

Does not estimate evidence

Does not support amortization

Does not support subsampling

Does not support model learning

How can we get the best of both worlds?

Can we support data subsampling (mini-batching)?

A principle road block to supporting data subsampling in variational MCMC methods is reliance on the **gradient of the full model log density**

$$\nabla_{\mathbf{z}} \log p_{\theta}(\mathcal{D}, \mathbf{z})$$

expensive to compute!

Basic strategy: learn a simple parametric *deterministic* approximation to the likelihood that is cheap to evaluate

$$\hat{\Psi}_L(\mathbf{z}) = \sum_n \omega_n \log p(\tilde{y}_n | \mathbf{z}, \tilde{\mathbf{x}}_n) \approx \log p_{\theta}(\mathcal{D} | \mathbf{z})$$

surrogate log likelihood

learnable weights

surrogate data points

full log likelihood

- Conceptually similar to Bayesian coresets
- Weights can be learned jointly with other variational parameters
- Never need to evaluate the full model log density

Combine surrogate likelihood with VI+MCMC algorithm

DAIS \equiv UHA

Asymptotically unbiased (?)

Does estimate evidence

Does support amortization

Does support model learning

Does **not** support subsampling

Differentiable Annealed Importance Sampling and the Perils of Gradient Noise

Guodong Zhang^{1,2}, Kyle Hsu³, Jianing Li¹, Chelsea Finn³, Roger Grosse^{1,2}

¹University of Toronto, ²Vector Institute, ³Stanford University

{gdzhang, rgrosse}@cs.toronto.edu
{kylehsu, cbfinn}@cs.stanford.edu, jrobert.li@mail.utoronto.ca

MCMC Variational Inference via Uncorrected Hamiltonian Annealing

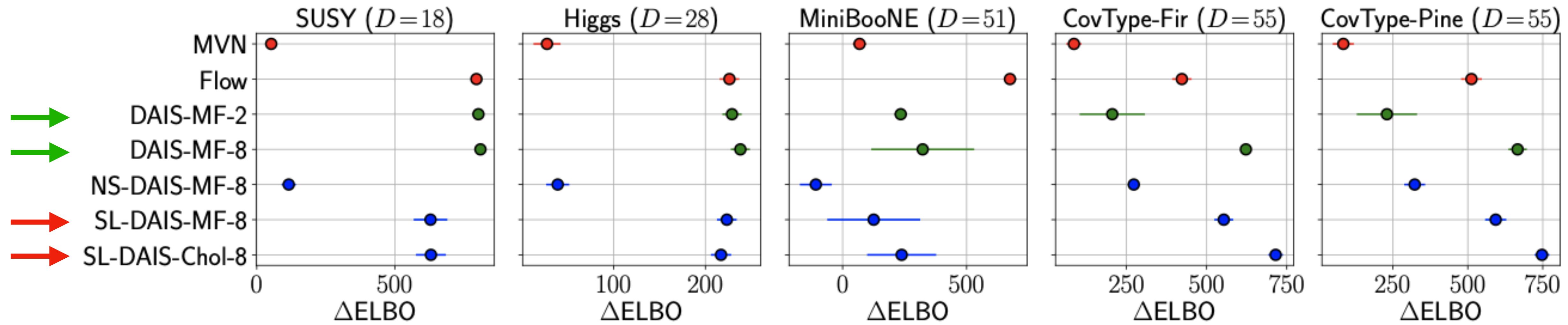
Tomas Geffner

College of Information and Computer Science
University of Massachusetts, Amherst
Amherst, MA
tgeffner@cs.umass.edu

Justin Domke

College of Information and Computer Science
University of Massachusetts, Amherst
Amherst, MA
domke@cs.umass.edu

Experiment: logistic regression with 50k data points



ELBO improvement w.r.t. mean-field baseline

Summary & Outlook

- Surrogate likelihoods are a useful ingredient in constructing variational inference algorithms that leverage gradient-based MCMC
- Offer a trade-off between posterior fidelity and computational cost
- Can also be applied to local latent variable models: see paper
- Resulting algorithms are easily automated in a PPL like NumPyro
- The design space for further elaborations of variational inference + MCMC remains open!

<https://num.pyro.ai/en/stable/autoguide.html>