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Consider a global latent variable model:
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dataset latent varlable

How do we approximate the posterior?
po(z|D)

How do we compute the evidence?

po(D) = /dz po(D, z)



Variational Inference MCMC
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How can we get the best of both worlds?



Can we support data subsampling (mini-batching)?

A principle road block to supporting data subsampling
In variational MCMC methods is reliance on the
gradient of the full model log density
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expensive to compute!



Basic strategy: learn a simple parametric
deterministic approximation to the likelihood
that Is cheap to evaluate
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learnable surrogate full log
weights data points likelihood

e Conceptually similar to Bayesian coresets
 \Weights can be learned jointly with other variational parameters
* Never need to evaluate the full model log density



Combine surrogate likelihood with VI+MCMC algorithm

DAIS = UHA
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Experiment: logistic regression with 50k data points
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Summary & Outlook

e Surrogate likelihoods are a useful ingredient in constructing
variational inference algorithms that leverage gradient-based MCMC

o Offer a trade-off between posterior fidelity and computational cost

e Can also be applied to local latent variable models: see paper

 Resulting algorithms are easily automated in a PPL like NumPyro

 The design space for further elaborations of variational inference +

MCMC remains open!

https://num.pyro.ai/en/stable/autoguide.html




