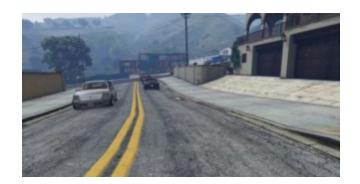


Learning Domain Adaptive Object Detection with Probabilistic Teacher

Meilin Chen, Weijie Chen, Shicai Yang, Jie Song, Xinchao Wang, Lei Zhang, Yunfeng Yan, Donglian Qi, Yueting Zhuang, Di Xie, Shiliang Pu

Unsupervised domain adaptation for object detection

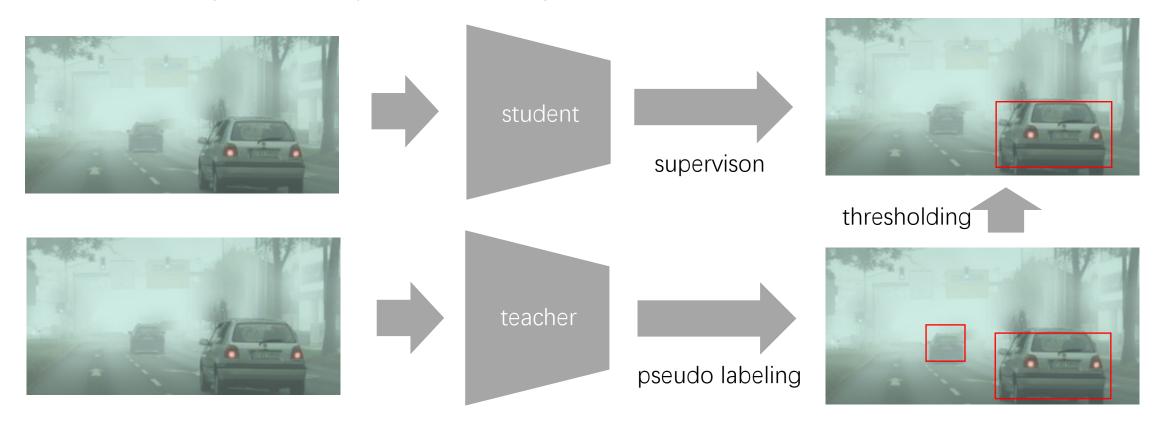


labeled source domain

unlabeled target domain

Previous works: self training

motivation: mining confident supervision from target domain



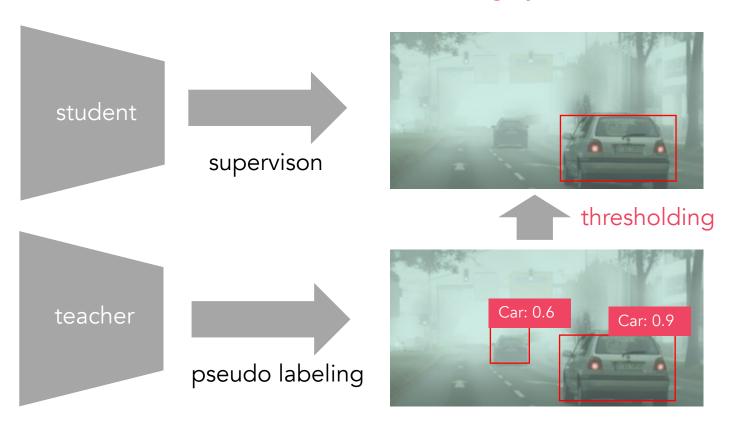
Reference:

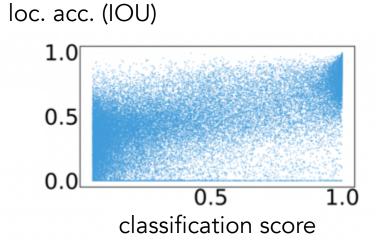
- [1] Unbiased Mean Teacher for Cross-Domain Object Detection, in CVPR2021
- [2] SimROD: A Simple Adaptation Method for Robust Object Detection, in ICCV2021

Challenges about threshold

Performance challenge: the foreground scores fail to measure the quality of pseudo boxes

thresholding by classification scores

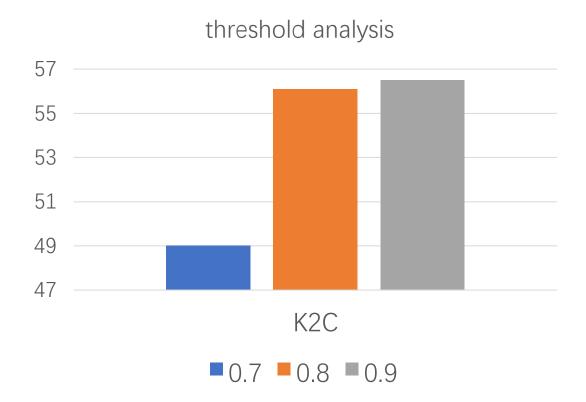




Challenges about threshold

Dependence challenge: the performance heavily depend on the threshold selections

- 1. In a single dataset, the performance is very sensitive to the threshold selections
- 2. In different datasets, the best threshold selections vary a lot



Challenges about objects size distributions gap

Object size distributions gap is one typical kind of the domain gaps

labeled source domain

unlabeled target domain

Challenges about intra-domain gap

Intra-domain gap is one of the bottlenecks restricting the performance of UDA-OD

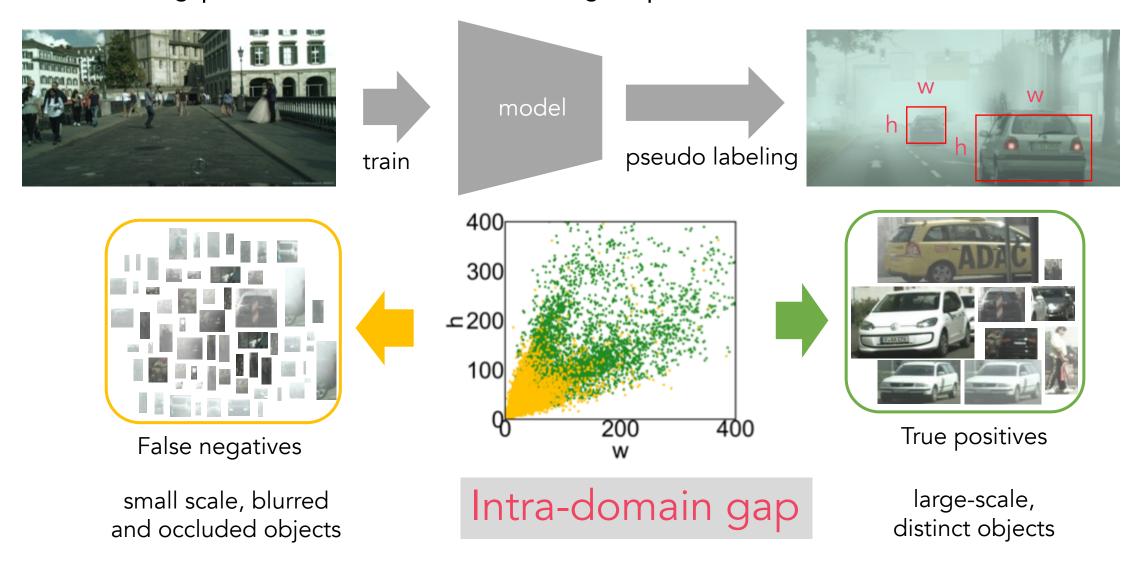
inter-domain gap

labeled source domain

unlabeled target domain

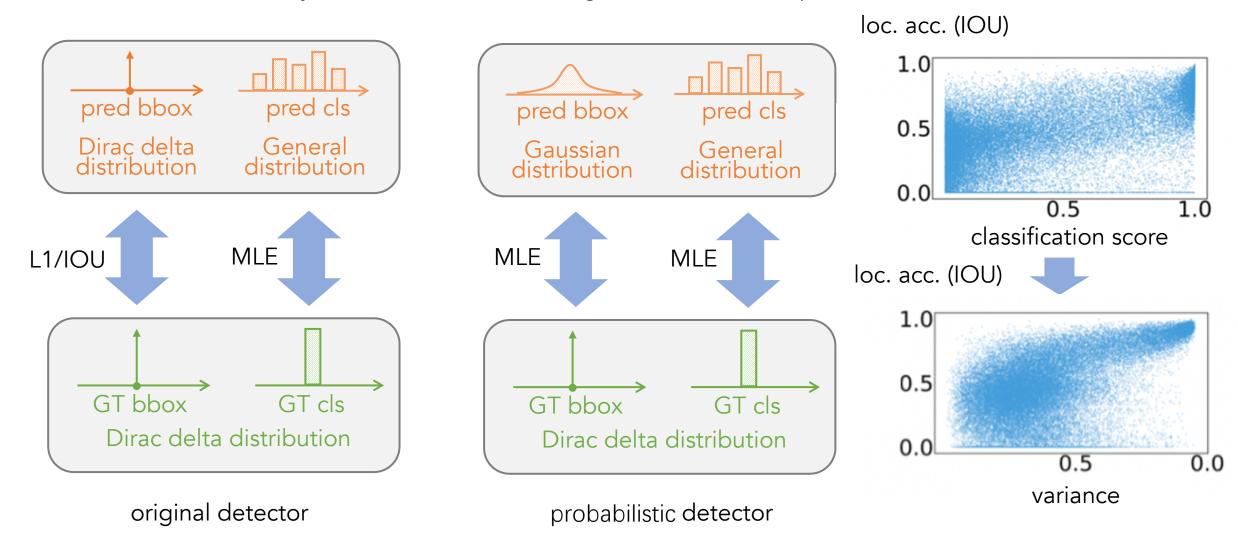
Challenges about intra-domain gap

Intra-domain gap is one of the bottlenecks restricting the performance of UDA-OD

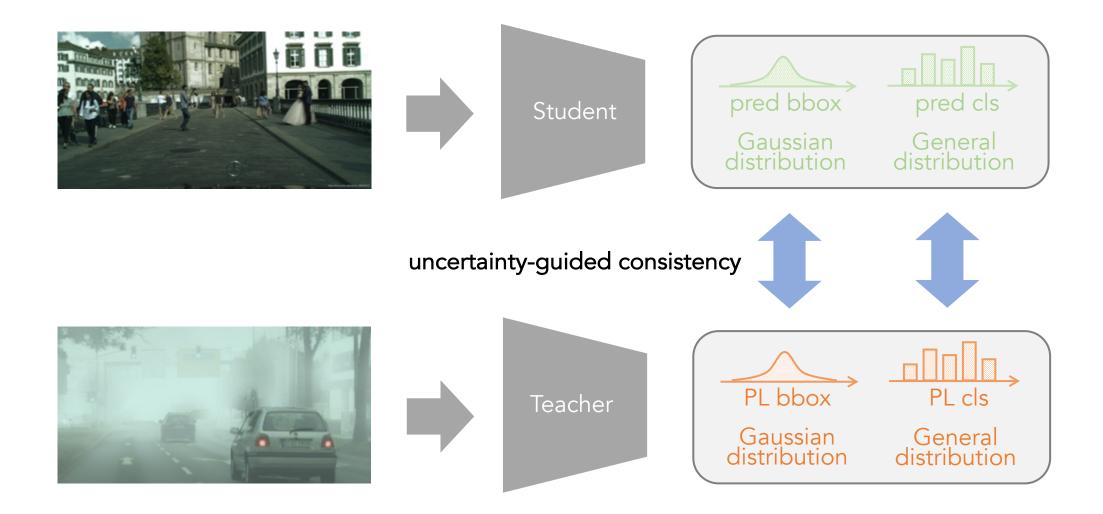


Threshold-free via uncertainty-driven classification and localization adaptation

To obtain the uncertainty of localization, we first argument detector to probabilistic one

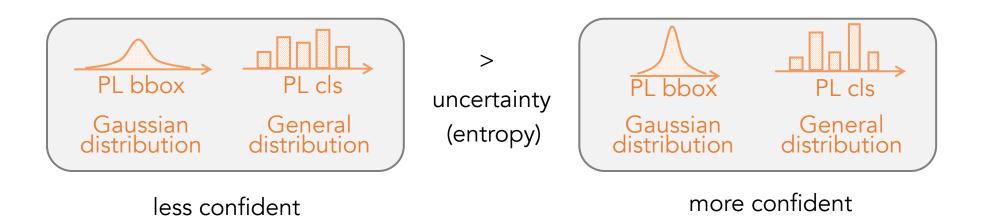


Threshold-free via uncertainty-guided classification and localization adaptation

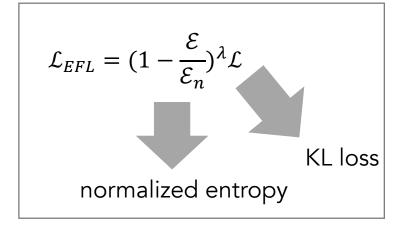


Threshold-free via uncertainty-driven classification and localization adaptation

To mine more confident samples:

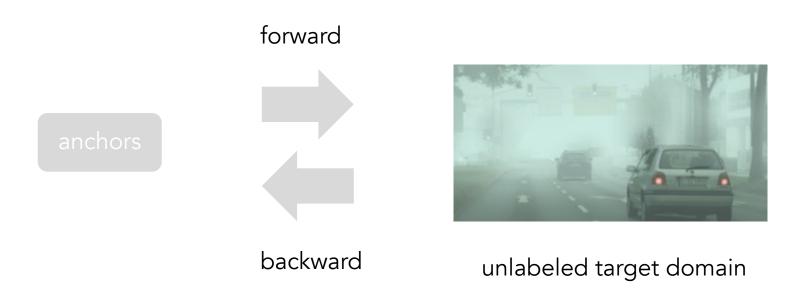


Entropy Focal Loss



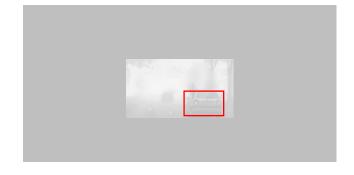
Anchor adaptation

Learnable anchor to match the distribution of boxes in target domain



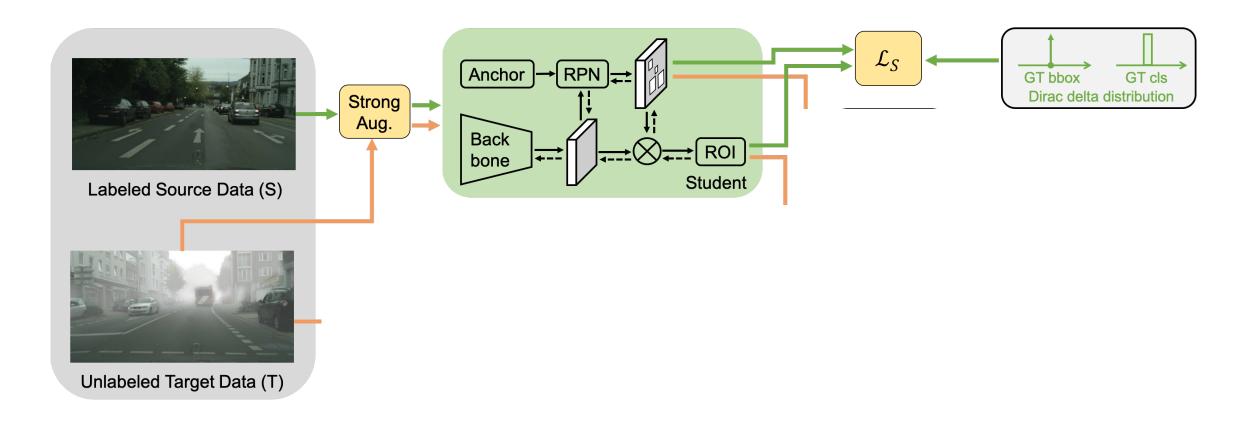
Intra-domain alignment via strong augmentation

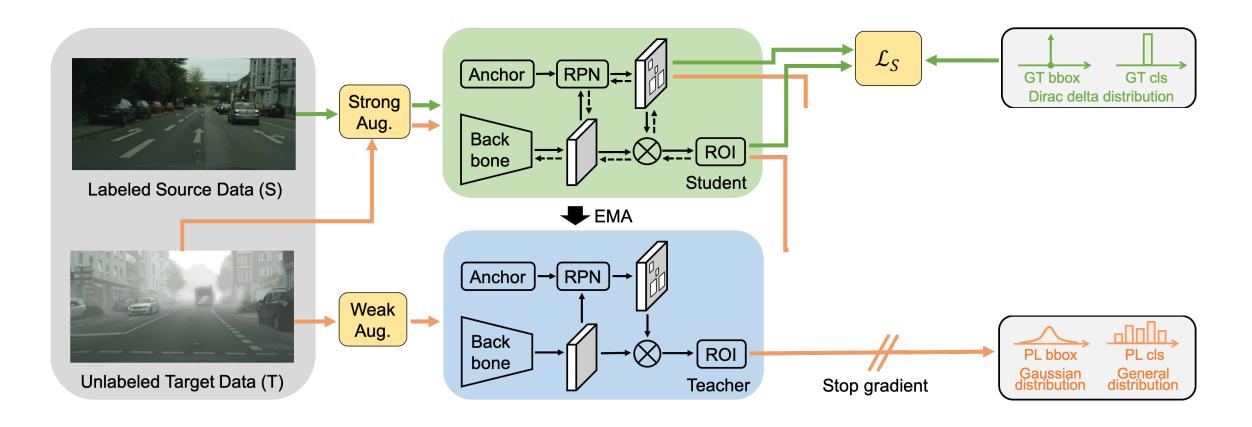
Strong data augmentation is an implicit intra-domain alignment method to bridge the intra-domain gap

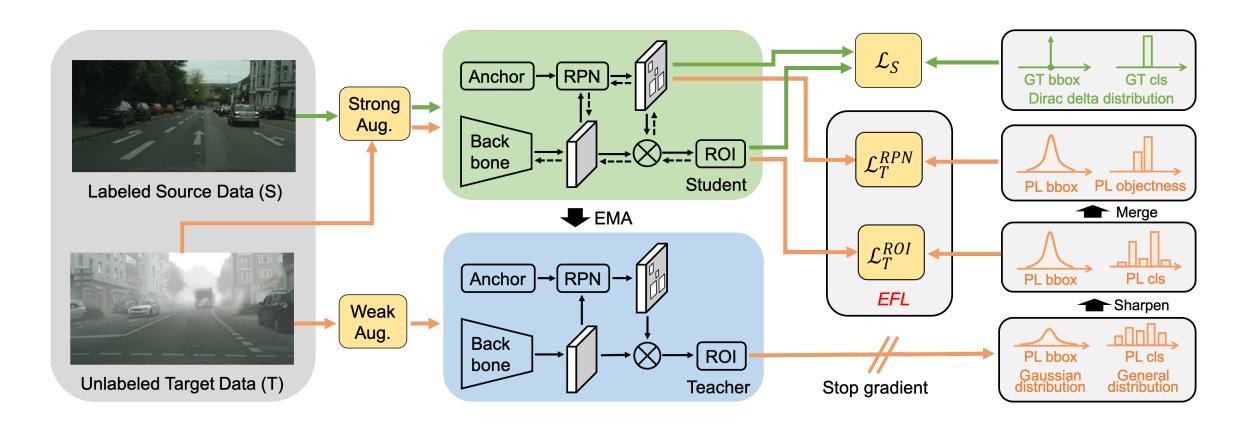


large-scale, distinct objects

small scale, blurred and occluded ones

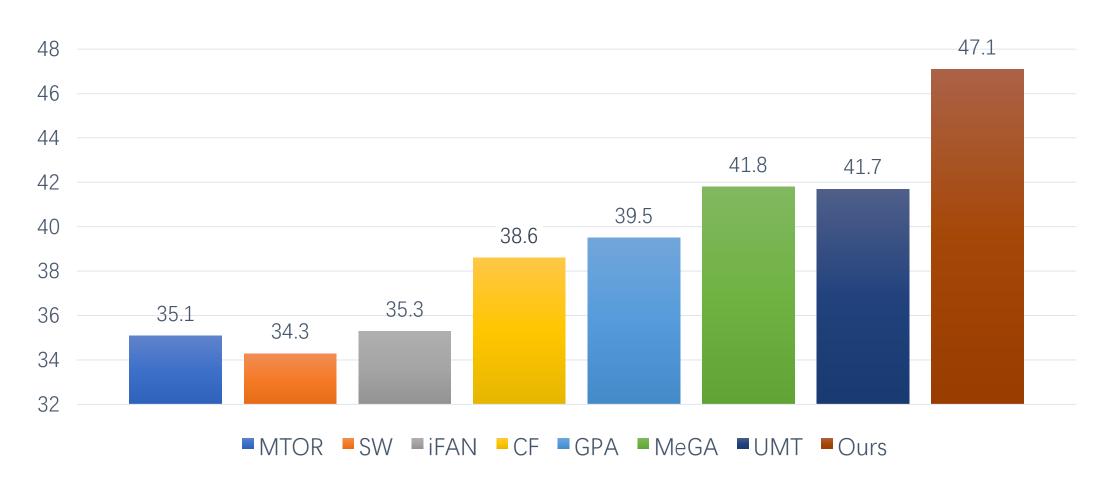




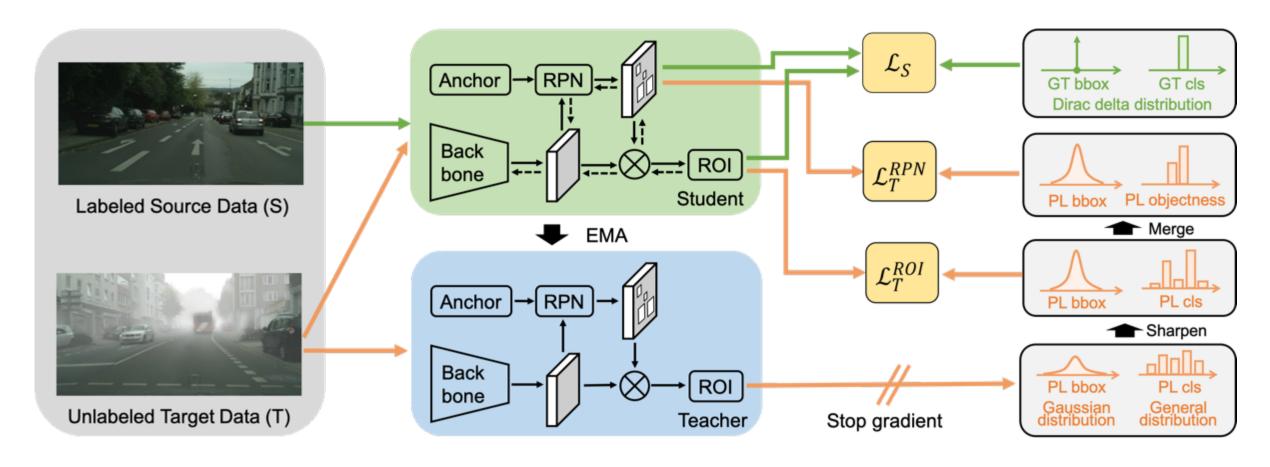


Experimental results

Adaptation from normal to foggy weather

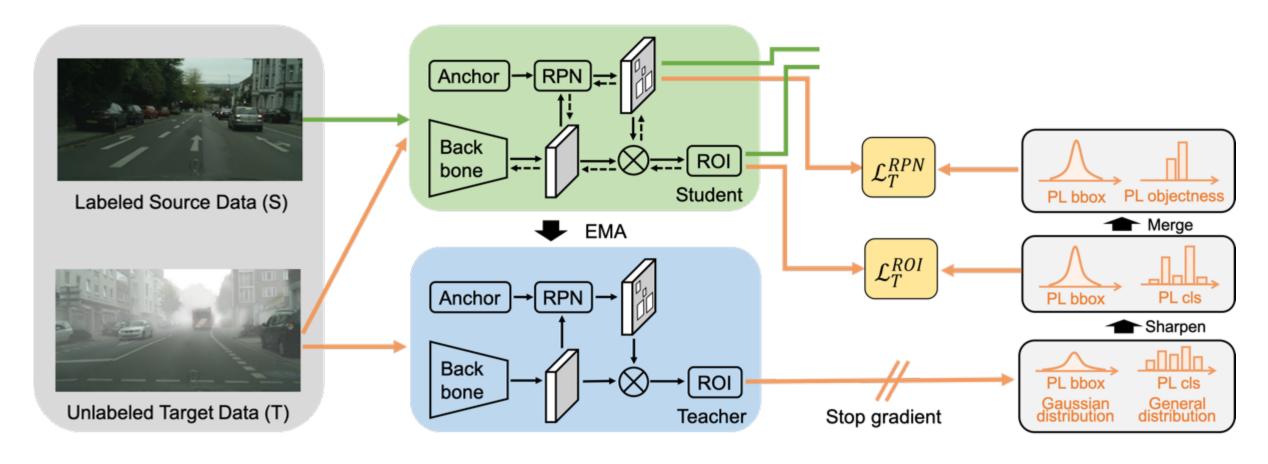


From source-based to source-free



from source-based to source-free

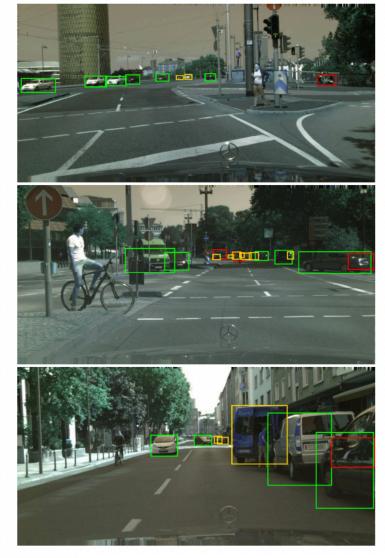
From source-based to source-free

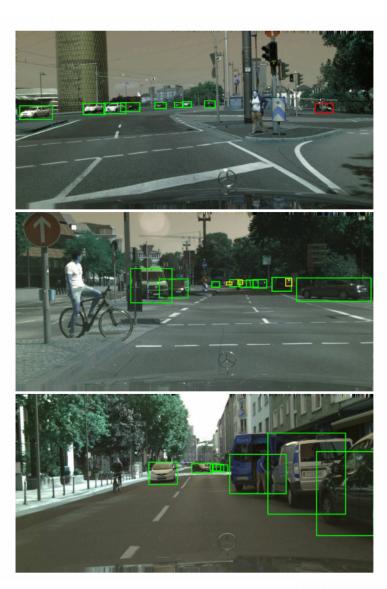


from source-based to source-free

Results of source-free setting

Visualization





Yellow: False Negatives Green: True Positives Red: False Positives

Our method can detect more small scale, blurred and occluded objects

Previous method

Ours

Conclusions

- Probabilistic Teacher
 - √ threshold-free
 - ✓ effective
 - ✓ scalable
- Intra-domain gap

https://arxiv.org/abs/2206.06293

https://github.com/hikvision-research/ProbabilisticTeacher

Thanks!