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Unsupervised domain adaptation for object detection

labeled source domain unlabeled target domain



Previous works : self training

motivation: mining confident supervision from target domain

Reference:
[1] Unbiased Mean Teacher for Cross-Domain Object Detection, in CVPR2021
[2] SimROD: A Simple Adaptation Method for Robust Object Detection, in ICCV2021
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Performance challenge: the foreground scores fail to measure the quality of pseudo boxes

Challenges about threshold



Dependence challenge: the performance heavily depend on the threshold selections

1. In a single dataset, the performance is very sensitive to the threshold selections

2. In different datasets, the best threshold selections vary a lot
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Object size distributions gap is one typical kind of the domain gaps

Challenges about objects size distributions gap

labeled source domain unlabeled target domain



Intra-domain gap is one of the bottlenecks restricting the performance of UDA-OD

labeled source domain unlabeled target domain

Challenges about intra-domain gap

inter-domain gap
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Challenges about intra-domain gap

Intra-domain gap is one of the bottlenecks restricting the performance of UDA-OD

False negatives

small scale, blurred
and occluded objects

True positives

large-scale, 
distinct objects

Intra-domain gap
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Threshold-free via uncertainty-driven classification and localization adaptation

To obtain the uncertainty of localization, we first argument detector to probabilistic one
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Threshold-free via uncertainty-guided classification and localization adaptation

uncertainty-guided consistency
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To mine more confident samples:
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Threshold-free via uncertainty-driven classification and localization adaptation



Anchor adaptation

Learnable anchor to match the distribution of boxes in target domain

unlabeled target domain
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forward
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Intra-domain alignment via strong augmentation

large-scale, 
distinct objects

strong augmentation

small scale, blurred
and occluded ones

Strong data augmentation is an implicit intra-domain alignment method to bridge the intra-domain gap
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Experimental results

Adaptation from normal to foggy weather 
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From source-based to source-free

from source-based to source-free



From source-based to source-free

from source-based to source-free
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Results of source-free setting



Visualization

Previous method Ours

Our method can detect more
small scale, blurred

and occluded objects

Yellow: False Negatives
Green: True Positives
Red: False Positives



Conclusions

• Probabilistic Teacher

ü threshold-free

ü effective

ü scalable

• Intra-domain gap

https://arxiv.org/abs/2206.06293

https://github.com/hikvision-research/ProbabilisticTeacher



Thanks!


