An iterative clustering algorithm for the Contextual Stochastic
Block Model with optimality guarantees

Work conducted under the supervision of Christophe Biernacki and Hemant Tyagi

Guillaume Braun

ICML
July 2022, Baltimore

s Université
lreeia— de Lille

inventors for the digital world




Motivation: clustering graphs with side information
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Figure: A social network with node features.
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The Contextual Stochastic Block Model

m Adjacency matrix A € {0,1}"%" ~ SBM(n, K, ) where:
m n = number of nodes;
m K = number of communities;
m Z €0, 1}"XK partition matrix, Z;, = 1 iff i € Cy;
= M € [0,1]"*K= connectivity matrix.

m Nodes features (X,-),-e[,,] generated independently of A and conditionally on Z by

Xi = pz + €;, where ¢; nd: N(0,521y)
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Use a spectral method (random initialization sometimes also works) to get a first
estimate Z(9) of Z.

For t < T do:

m Estimate the model parameters.
m Refine the partition by solving a least square optimization problem that approximate the
MAP for each node i.

Output the final partition Z(T)

Advantages : the algorithm is fast and statistically optimal.



Main results

Theorem

The misclustering rate r(Z(T), Z) satisfies
r(Z(T),Z) 5 ef(SNRlJrSNRQ)

where SNR; is the graph Signal-To-Noise Ratio (SNR) and SNR> is the features
SNR.

m The rate of convergence is minimax optimal.
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where SNR; is the graph Signal-To-Noise Ratio (SNR) and SNR> is the features
SNR.

m The rate of convergence is minimax optimal.

m In practice it also works on weighted graphs and one can sometimes use a
random initialization.




