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Motivation: clustering graphs with side information

Figure: A social network with node features.
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The Contextual Stochastic Block Model

Adjacency matrix A ∈ {0, 1}n×n ∼ SBM(n,K ,Π) where:
n = number of nodes;
K = number of communities;
Z ∈ {0, 1}n×K partition matrix, Zik = 1 iff i ∈ Ck ;

Π ∈ [0, 1]n×K= connectivity matrix.

Nodes features (Xi )i∈[n] generated independently of A and conditionally on Z by

Xi = µzi + ϵi , where ϵi
ind.∼ N (0, σ2Id )
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The algorithm principle

1 Use a spectral method (random initialization sometimes also works) to get a first
estimate Z (0) of Z .

2 For t ≤ T do:
Estimate the model parameters.
Refine the partition by solving a least square optimization problem that approximate the
MAP for each node i .

3 Output the final partition Z (T )

Advantages : the algorithm is fast and statistically optimal.
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Main results

Theorem

The misclustering rate r(Z (T ),Z) satisfies

r(Z (T ),Z) ≲ e−(SNR1+SNR2)

where SNR1 is the graph Signal-To-Noise Ratio (SNR) and SNR2 is the features
SNR.

The rate of convergence is minimax optimal.

In practice it also works on weighted graphs and one can sometimes use a
random initialization.
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