

An iterative clustering algorithm for the Contextual Stochastic Block Model with optimality guarantees

Work conducted under the supervision of Christophe Biernacki and Hemant Tyagi

Guillaume Braun

ICML

July 2022, Baltimore

Motivation: clustering graphs with side information

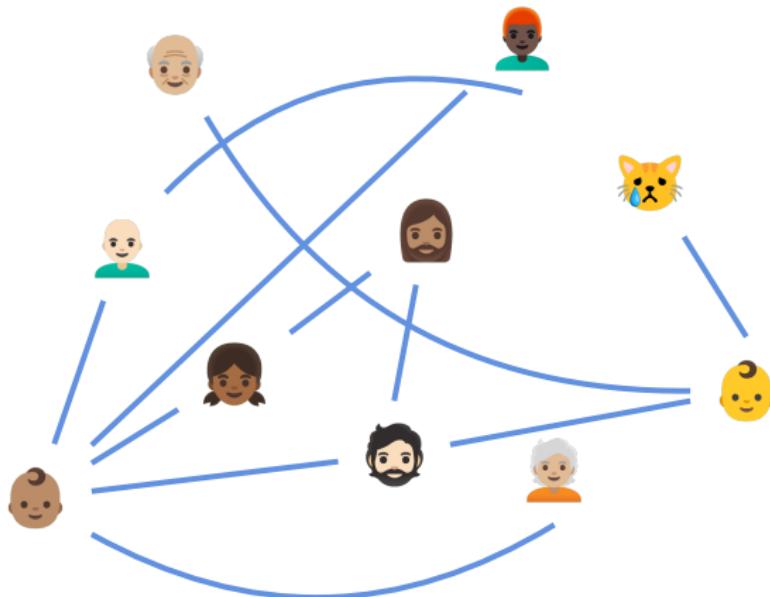


Figure: A social network with node features.

The Contextual Stochastic Block Model

- Adjacency matrix $A \in \{0, 1\}^{n \times n} \sim SBM(n, K, \Pi)$ where:
 - n = number of nodes;
 - K = number of communities;
 - $Z \in \{0, 1\}^{n \times K}$ partition matrix, $Z_{ik} = 1$ iff $i \in C_k$;
 - $\Pi \in \{0, 1\}^{K \times K}$ = connectivity matrix.
- Nodes features $(X_i)_{i \in [n]}$ generated independently of A and conditionally on Z by

$$X_i = \mu_{z_i} + \epsilon_i, \text{ where } \epsilon_i \stackrel{\text{ind.}}{\sim} \mathcal{N}(0, \sigma^2 I_d)$$

The Contextual Stochastic Block Model

- Adjacency matrix $A \in \{0, 1\}^{n \times n} \sim SBM(n, K, \Pi)$ where:
 - n = number of nodes;
 - K = number of communities;
 - $Z \in \{0, 1\}^{n \times K}$ partition matrix, $Z_{ik} = 1$ iff $i \in C_k$;
 - $\Pi \in [0, 1]^{n \times K}$ = connectivity matrix.
- Nodes features $(X_i)_{i \in [n]}$ generated independently of A and conditionally on Z by

$$X_i = \mu_{z_i} + \epsilon_i, \text{ where } \epsilon_i \stackrel{\text{ind.}}{\sim} \mathcal{N}(0, \sigma^2 I_d)$$

The Contextual Stochastic Block Model

- Adjacency matrix $A \in \{0, 1\}^{n \times n} \sim SBM(n, K, \Pi)$ where:
 - n = number of nodes;
 - K = number of communities;
 - $Z \in \{0, 1\}^{n \times K}$ partition matrix, $Z_{ik} = 1$ iff $i \in C_k$;
 - $\Pi \in [0, 1]^{n \times K}$ = connectivity matrix.
- Nodes features $(X_i)_{i \in [n]}$ generated independently of A and conditionally on Z by

$$X_i = \mu_{z_i} + \epsilon_i, \text{ where } \epsilon_i \stackrel{\text{ind.}}{\sim} \mathcal{N}(0, \sigma^2 I_d)$$

The Contextual Stochastic Block Model

- Adjacency matrix $A \in \{0, 1\}^{n \times n} \sim SBM(n, K, \Pi)$ where:
 - n = number of nodes;
 - K = number of communities;
 - $Z \in \{0, 1\}^{n \times K}$ partition matrix, $Z_{ik} = 1$ iff $i \in C_k$;
 - $\Pi \in [0, 1]^{n \times K}$ = connectivity matrix.
- Nodes features $(X_i)_{i \in [n]}$ generated independently of A and conditionally on Z by

$$X_i = \mu_{Z_i} + \epsilon_i, \text{ where } \epsilon_i \stackrel{\text{ind.}}{\sim} \mathcal{N}(0, \sigma^2 I_d)$$

The Contextual Stochastic Block Model

- Adjacency matrix $A \in \{0, 1\}^{n \times n} \sim SBM(n, K, \Pi)$ where:
 - n = number of nodes;
 - K = number of communities;
 - $Z \in \{0, 1\}^{n \times K}$ partition matrix, $Z_{ik} = 1$ iff $i \in C_k$;
 - $\Pi \in [0, 1]^{n \times K}$ = connectivity matrix.
- Nodes features $(X_i)_{i \in [n]}$ generated independently of A and conditionally on Z by

$$X_i = \mu_{Z_i} + \epsilon_i, \text{ where } \epsilon_i \stackrel{\text{ind.}}{\sim} \mathcal{N}(0, \sigma^2 I_d)$$

The Contextual Stochastic Block Model

- Adjacency matrix $A \in \{0, 1\}^{n \times n} \sim SBM(n, K, \Pi)$ where:
 - n = number of nodes;
 - K = number of communities;
 - $Z \in \{0, 1\}^{n \times K}$ partition matrix, $Z_{ik} = 1$ iff $i \in \mathcal{C}_k$;
 - $\Pi \in [0, 1]^{n \times K}$ = connectivity matrix.
- Nodes features $(X_i)_{i \in [n]}$ generated independently of A and conditionally on Z by

$$X_i = \mu_{z_i} + \epsilon_i, \text{ where } \epsilon_i \stackrel{\text{ind.}}{\sim} \mathcal{N}(0, \sigma^2 I_d)$$

The algorithm principle

- 1 Use a spectral method (random initialization sometimes also works) to get a first estimate $Z^{(0)}$ of Z .
- 2 For $t \leq T$ do:
 - a Estimate the model parameters.
 - b Solve the problem of solving a least squares minimization problem that approximates the values for each node.
- 3 Output the final partition $Z^{(T)}$.

Advantages : the algorithm is fast and statistically optimal.

The algorithm principle

- 1 Use a spectral method (random initialization sometimes also works) to get a first estimate $Z^{(0)}$ of Z .
- 2 For $t \leq T$ do:
 - Estimate the model parameters.
 - Refine the partition by solving a least square optimization problem that approximate the MAP for each node i .
- 3 Output the final partition $Z^{(T)}$

Advantages : the algorithm is fast and statistically optimal.

The algorithm principle

- 1 Use a spectral method (random initialization sometimes also works) to get a first estimate $Z^{(0)}$ of Z .
- 2 For $t \leq T$ do:
 - Estimate the model parameters.
 - Refine the partition by solving a least square optimization problem that approximate the MAP for each node i .
- 3 Output the final partition $Z^{(T)}$

Advantages : the algorithm is fast and statistically optimal.

The algorithm principle

- 1 Use a spectral method (random initialization sometimes also works) to get a first estimate $Z^{(0)}$ of Z .
- 2 For $t \leq T$ do:
 - Estimate the model parameters.
 - Refine the partition by solving a least square optimization problem that approximate the MAP for each node i .
- 3 Output the final partition $Z^{(T)}$

Advantages : the algorithm is fast and statistically optimal.

The algorithm principle

- 1 Use a spectral method (random initialization sometimes also works) to get a first estimate $Z^{(0)}$ of Z .
- 2 For $t \leq T$ do:
 - Estimate the model parameters.
 - Refine the partition by solving a least square optimization problem that approximate the MAP for each node i .
- 3 Output the final partition $Z^{(T)}$

Advantages : the algorithm is *fast* and *statistically optimal*.

The algorithm principle

- 1 Use a spectral method (random initialization sometimes also works) to get a first estimate $Z^{(0)}$ of Z .
- 2 For $t \leq T$ do:
 - Estimate the model parameters.
 - Refine the partition by solving a least square optimization problem that approximate the MAP for each node i .
- 3 Output the final partition $Z^{(T)}$

Advantages : the algorithm is *fast* and *statistically optimal*.

The algorithm principle

- 1 Use a spectral method (random initialization sometimes also works) to get a first estimate $Z^{(0)}$ of Z .
- 2 For $t \leq T$ do:
 - Estimate the model parameters.
 - Refine the partition by solving a least square optimization problem that approximate the MAP for each node i .
- 3 Output the final partition $Z^{(T)}$

Advantages : the algorithm is **fast** and **statistically optimal**.

Main results

Theorem

The misclustering rate $r(Z^{(T)}, Z)$ satisfies

$$r(Z^{(T)}, Z) \lesssim e^{-(\text{SNR}_1 + \text{SNR}_2)}$$

where SNR_1 is the graph Signal-To-Noise Ratio (SNR) and SNR_2 is the features SNR.

- The rate of convergence is minimax optimal.
- In practice it also works on weighted graphs and one can sometimes use a random initialization.

Main results

Theorem

The misclustering rate $r(Z^{(T)}, Z)$ satisfies

$$r(Z^{(T)}, Z) \lesssim e^{-(\text{SNR}_1 + \text{SNR}_2)}$$

where SNR_1 is the graph Signal-To-Noise Ratio (SNR) and SNR_2 is the features SNR.

- The rate of convergence is minimax optimal.
- In practice it also works on **weighted graphs** and one can sometimes use a **random initialization**.