Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		000			

Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning

Jiechao Guan^{1,3}, Zhiwu Lu^{2,3,*}

¹School of Information, Renmin University of China, Beijing, China ²Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China ³Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China

*Corresponding Author

{2014200990,luzhiwu}@ruc.edu.cn

July 12, 2022

Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning (ICML2022)

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		

Presentation Outline

1 Background

- PAC-Bayesian Bounds for Single-Task Learning
- PAC-Bayesian Framework for Meta-Learning

2 Motivation

- The Limitation of Existing Works
- Motivation of Our Fast-Rate PAC-Bayesian Bounds
- Extending kl-Bound and Catoni-Bound to the Independent Setting

3 Improved PAC-Bayesian Bounds

- Fast-Rate Bounds for Meta-Learning with Independent Tasks
- Closed-Form of Hyper-Posterior in Minimizing Catoni-Bound
- Fast-Rate kl-Bound for Meta-Learning with Dependent Tasks

Algorithms and Experiments

- PAC-Bayesian Bound-Minimization Algorithms for Classification
- Gibbs Optimal Hyper-Posterior Algorithm for Regression

5 Conclusions

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
•		000	00		
		00	00		

PAC-Bayesian Bounds for Single-Task Learning

Table 1: Notations of PAC-Bayesian single-task learning. The loss $\ell : \mathcal{H} \times \mathcal{Z} \to [0, 1]$. $\hat{er}(Q, S) = \mathbf{E}_{h \sim Q} \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_i),$ $er(Q, D) = \mathbf{E}_{h \sim Q} \mathbf{E}_{z \sim D} \ell(h, z).$ KL-divergences $\mathcal{K}(Q, P) = \mathbf{E}_{h \sim Q} \ln \frac{\mathrm{d}Q}{\mathrm{d}P}, \mathrm{kl}(p, q) = p \ln \frac{p}{q} + (1-p) \ln \frac{1-p}{1-q}.$

Unknown Task	$D\in \mathcal{M}_1(\mathcal{Z})$	Hypothesis Space	\mathcal{H}
Prior	$P\in \mathcal{M}_1(\mathcal{H})$	Posterior	$Q\in \mathcal{M}_1(\mathcal{H})$
Empirical Error	$\widehat{er}(Q,S)$	Expected Error	er(Q, D)

Theorem 1.1

[5] [Corollary 2.1-2.2] Let ℓ be $\{0,1\}$ -valued loss. \forall fixed prior P, $\delta, \lambda > 0$, with probability $\geq 1 - \delta$ over i.i.d. S, for any posterior $Q \in \mathcal{M}_1(\mathcal{H})$:

$$\begin{split} \mathsf{kl}(\widehat{er}(Q,S),er(Q,D)) &\leq \frac{\mathcal{K}(Q,P) + \ln{(2\sqrt{m}/\delta)}}{m}, \\ er(Q,D) &\leq \frac{\lambda}{m(1 - \mathrm{e}^{-\lambda/m})} \widehat{er}(Q,S) + \frac{\mathcal{K}(Q,P) + \ln{(1/\delta)}}{m(1 - \mathrm{e}^{-\lambda/m})} \end{split}$$

Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning (ICML2022)

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
•		00	00		

PAC-Bayesian Framework for Meta-Learning

Table 2: Notations of PAC-Bayesian meta-learning. The training sample $\mathbf{S} = \{S_i\}_{i=1}^n$, where S_i is the dataset in the *i*-th training task and is formed by sampling *m* times from distribution D_i , where $D_i \sim \tau$. Q(S, P) is the output posterior by running algorithm with sample *S* and prior *P* as input.

Sample	$S\in \mathcal{Z}^m$
Training Set	$\mathbf{S} = \{S_i\}_{i=1}^n \in (\mathcal{Z}^m)^n$
Task Environment	$ au \in \mathcal{M}_1(\mathcal{M}_1(\mathcal{Z}))$
Hyper-Prior	$\mathcal{P}\in\mathcal{M}_1(\mathcal{M}_1(\mathcal{H}))$
Hyper-Posterior	$\mathcal{Q}\in\mathcal{M}_1(\mathcal{M}_1(\mathcal{H}))$
Empirical Multi-Task Error	$\widehat{er}(\mathcal{Q}) = \mathbf{E}_{P \sim \mathcal{Q}} 1/n \sum_{i=1}^{n} \widehat{er}(Q(S_i, P), S_i)$
Expected Multi-Task Error	$\widetilde{er}(\mathcal{Q}) = \mathbf{E}_{P \sim \mathcal{Q}} 1 / n \sum_{i=1}^{n} er(Q(S_i, P), D_i)$
Transfer Error	$er(\mathcal{Q}) = \mathbf{E}_{P \sim \mathcal{Q}} \mathbf{E}_{D \sim \tau} \mathbf{E}_{S \sim D^m} er(Q(S, P), D)$

The goal of PAC-Bayesian meta-learning theory is thus to give a generalization bound on the transfer error er(Q) based on $\hat{er}(Q)$.

Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning (ICML2022)

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
	•	000	00		
		00	00		

The Limitation of Existing PAC-Bayesian Bounds for Meta-Learning

To give PAC-Bayesian bounds for meta-learning, we need to choose convex function $\mathcal{D}(p, q)$ and then bound the moment generating function (MGF) of $\mathcal{D}(p, q)$ (i.e., $\mathbf{E} \exp\{\mathcal{D}(er(\mathcal{Q}), \tilde{er}(\mathcal{Q}))\}\)$ and $\mathbf{E} \exp\{\mathcal{D}(\tilde{er}(\mathcal{Q}), \hat{er}(\mathcal{Q}))\}\)$.

Almost all existing works [8, 9, 10] set $\mathcal{D}(p, q) = p - q$, apply Hoeffding's lemma to bound the MGF of $\mathcal{D}(p, q)$, and finally obtain a PAC-Bayesian meta learning bound of $O(1/t + t/K)(\forall t > 0)$, which suffers a slow convergence rate of $O(1/\sqrt{K})$ (K > 0), where K is the number of observations.

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
	•	00	00		
		000			

Motivation of Our Fast-Rate PAC-Bayesian Bounds

In contrast, we set $\mathcal{D}(p,q)$ as kl(q,p) or ${}^{1}\Phi_{\frac{\lambda}{K}}(p) - q$, $(\lambda > 0)$, as what we do to obtain the PAC-Bayesian kl-bound and Catoni-bound in single-task learning. However, since $\tilde{er}(Q)$ and $\hat{er}(Q)$ are the summations of independent [0, 1]-valued random variables (not i.i.d. $\{0, 1\}$ -valued ones as in Theorem 1.1), we can not directly apply the results in Theorem 1.1 to bound the MGF of $\mathcal{D}(p,q)$. To overcome this challenge, we use the following lemma to bound the expectation of the function of the sum of independent [0, 1]-valued random variables (rvs) with the expectation of the function of the sum of i.i.d. $\{0, 1\}$ -valued ones. Such result is originated from [2].

Lemma 2.1

Let $\{\xi_k\}_{k=1}^K$ be a sequence of independent random variables with $P(0 \le \xi_k \le 1) = 1$, and $\{\eta_k\}_{k=1}^K$ be a sequence of i.i.d. Bernoulli random variables with $\mathbf{E}\eta_k = K^{-1}(\sum_{k=1}^K \mathbf{E}\xi_k)$. Then for any convex function g,

$$\mathsf{E}g(\frac{1}{K}\sum_{k=1}^{K}\xi_{k}) \leq \mathsf{E}g(\frac{1}{K}\sum_{k=1}^{K}\eta_{k}).$$

イロン イヨン イヨン イヨン

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
	•	000			

Extending PAC-Bayesian kl-Bound and Catoni-Bound to the Independent Setting

Theorem 2.2

Let \mathcal{F} be a set of rvs f. Let $\mathcal{S} = \{\xi_k\}_{k=1}^K$ be a sequence of random variables with each component ξ_k ($k \in [K]$) drawn independently according to the measure μ_k over the set A_k . Let $R(f) = \frac{1}{K} \sum_{k=1}^K \mathbf{E}_{\xi_k} g_k(f, \xi_k)$, $r(f) = \frac{1}{K} \sum_{k=1}^K g_k(f, \xi_k)$, where $g_k : \mathcal{F} \times A_k \to [0, 1]$ is a bounded function. Denote $\mathbf{E}_{f \sim \rho}(R(f)), \mathbf{E}_{f \sim \rho}(r(f))$ by $\rho(R), \rho(r)$ respectively. Then $\forall \delta > 0, \lambda > 0, \forall$ fixed $\pi \in \mathcal{M}_1(\mathcal{F})$, with probability $\geq 1 - \delta$ over \mathcal{S} , the following holds for any measure ρ over \mathcal{F} :

$$\begin{aligned} \mathsf{kl}(\rho(r),\rho(R)) &\leq \frac{\mathcal{K}(\rho,\pi) + \ln\left(2\sqrt{K}/\delta\right)}{K}, \\ \rho(R) &\leq \frac{\lambda\rho(r)}{K(1 - \mathrm{e}^{-\lambda/K})} + \frac{\mathcal{K}(\rho,\pi) + \ln(1/\delta)}{K(1 - \mathrm{e}^{-\lambda/K})}. \end{aligned}$$

Proof Sketch. Note that $\mathcal{D}(\rho(R), \rho(r)) \leq \frac{1}{\lambda} [\mathcal{K}(\rho, \pi) + \ln \mathbf{E}_{f \sim \pi} \mathbf{E}_{\mathcal{S}} e^{\lambda \mathcal{D}(R(f), r(f))} / \delta]$ holds with high probability for any convex function $\mathcal{D}(\cdot, \cdot)$. With Lemma 2.1 we can bound $\mathbf{E}_{\mathcal{S}} e^{\lambda \mathcal{D}(R(f), r(f))}$ with the MGF of convex function of the sum of i.i.d. Bernoulli rvs. Setting $\mathcal{D}(p, q)$ as kl(q, p) or $\Phi_{\lambda/K}(p) - q$, and using Theorem 1.1 finish the proof. $\langle \mathbf{E} \rangle \equiv \langle \mathbf{E} \rangle \langle \mathbf{E} \rangle$ **Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning (ICML2022)** Jiechao Guan, Zhiwu Lu

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		
		000			

Fast-Rate PAC-Bayesian kl-Bound for Meta-Learning

Apply the kl-bound in Theorem 2.2 to bound $kl(er(Q), \tilde{er}(Q))$ and $kl(\tilde{er}(Q), \hat{er}(Q))$ respectively, and use the union bound, we have

Theorem 3.1

For any predefined hyper-prior \mathcal{P} , with probability at least $1-\delta$ over the draw of the training sample $\{S_i\}_{i=1}^n$, the following holds for any hyper-posterior \mathcal{Q} :

$$er(\mathcal{Q}) \leq \widehat{er}(\mathcal{Q}) + \sqrt{\frac{\mathcal{K}(\mathcal{Q}, \mathcal{P}) + \ln \frac{2\sqrt{n}}{\delta}}{2n}} + \sqrt{\frac{2\Delta\widehat{er}(\mathcal{Q})}{mn}} + \frac{2\Delta}{mn}},$$

where $\Delta = \mathcal{K}(\mathcal{Q}, \mathcal{P}) + \mathbf{E}_{P \sim \mathcal{Q}} \sum_{i=1}^{n} \mathcal{K}(Q_i, P) + \ln \frac{2\sqrt{mn}}{\delta}$.

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		

Fast-Rate PAC-Bayesian Catoni-Bound for Meta-Learning

Apply the Catoni-bound in Theorem 2.2 to bound $er(Q) - \tilde{er}(Q)$ and $\tilde{er}(Q) - \hat{er}(Q)$ respectively, and use the union bound, we have

Theorem 3.2

For any predefined hyper-prior \mathcal{P} , any $\delta \in (0, 1)$, any $C_1, C_2 > 1$, with probability at least $1 - \delta$ over the draw of the training sample $\{S_i\}_{i=1}^n$, the following holds for any hyper-posterior \mathcal{Q} :

$$er(\mathcal{Q}) \leq \frac{C_1 C_2 \ln C_1 \ln C_2}{(C_1 - 1)(C_2 - 1)} \widehat{er}(\mathcal{Q}) + \frac{C_1(\mathcal{K}(\mathcal{Q}, \mathcal{P}) + \ln(2/\delta))}{n(C_1 - 1)} \\ + \frac{C_1 C_2 \ln C_1(\mathcal{K}(\mathcal{Q}, \mathcal{P}) + \mathbf{E}_{P \sim \mathcal{Q}} \sum_{i=1}^n \mathcal{K}(Q_i, P) + \ln(2/\delta))}{(C_1 - 1)(C_2 - 1)nm}.$$

Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning (ICML2022)

Jiechao Guan, Zhiwu Lu

э

(4回) (日) (日)

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		
		000			

Comparisons between Different PAC-Bayesian Bounds for Meta-Learning

Table 3: Different PAC-Bayesian meta-learning bounds on er(Q). **Bound** = **Empirical Error** + **Environment-level Complexity** + **Task-level Complexity**. *n* is the number of training tasks. *m* is the sample size per task. *n* is the number of training tasks. *m* is the sample size per task. P, Q are the hyper-prior and hyper-posterior respectively. In our Catoni-bound, the constant C > 1.

Classical Bounds	Empirical Error	Environment-Level Complexity	Task-Level Complexity
[8, p. ICML2014]	$\widehat{er}(\mathcal{Q})$	$O\left(\frac{\mathcal{K}(\mathcal{Q},\mathcal{P})}{\sqrt{n}}\right)$	$O\big(\frac{\mathcal{K}(\mathcal{Q},\mathcal{P})+\sum_{i=1}^{n}\mathbf{E}_{P\sim\mathcal{Q}}\mathcal{K}(Q_{i},P)}{n\sqrt{m}}+\frac{1}{\sqrt{m}}\big)$
[1, p. ICML2018]	$\widehat{er}(\mathcal{Q})$	$O\left(\sqrt{\frac{\mathcal{K}(\mathcal{Q},\mathcal{P})+\ln n}{n}}\right)$	$O(\frac{1}{n}\sum_{i=1}^{n}\sqrt{\frac{\mathcal{K}(\mathcal{Q},\mathcal{P})+\mathbf{E}_{P\sim\mathcal{Q}}\mathcal{K}(\mathcal{Q}_{i},P)+\ln(2nm)}{m}})$
[10, p. ICML2021]	$\widehat{er}(\mathcal{Q})$	$O\left(\frac{\mathcal{K}(\mathcal{Q},\mathcal{P})}{\sqrt{n}}\right)$	$O\big(\frac{\mathcal{K}(\mathcal{Q},\mathcal{P})+\sum_{i=1}^{n}\mathbf{E}_{P\sim\mathcal{Q}}\mathcal{K}(Q_{i},P)}{n\sqrt{m}}+\frac{1}{\sqrt{n}}\big)$
kl-bound (ours)	$\widehat{er}(\mathcal{Q})$	$O(\sqrt{\frac{\mathcal{K}(\mathcal{Q},\mathcal{P})+\ln\sqrt{n}}{n}})$	$O\big(\frac{\mathcal{K}(\mathcal{Q},\mathcal{P}) + \mathbf{E}_{P \sim \mathcal{Q}} \sum_{i=1}^{n} \mathcal{K}(Q_i, P) + \ln \sqrt{nm}}{mn}\big)$
Catoni-bound (ours)	Cêr(Q)	$O(\frac{\mathcal{K}(\mathcal{Q},\mathcal{P})}{n})$	$O(\frac{\mathcal{K}(\mathcal{Q},\mathcal{P})+\mathbf{E}_{P\sim\mathcal{Q}}\sum_{i=1}^{n}\mathcal{K}(Q_{i},P)}{mn})$

Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning (ICML2022)

Jiechao Guan, Zhiwu Lu

14 E 15

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		0	00		

Closed-Form of Hyper-Posterior when Minimizing Catoni-Bound (I)

We first give a corollary of Theorem 3.2 by choosing the Gibbs optimal posterior for each training task.

Corollary 3.3

 $\forall i \in [n]$, any prior $P \in \mathcal{M}_1(\mathcal{H})$, any training data $\{S_i\}_{i=1}^n$, let Q_i^* be the Gibbs optimal posterior such that $\frac{\mathrm{d}Q_i^*}{\mathrm{d}P} = \exp\{-m\widehat{er}(h,S_i)\}/Z(S_i,P)$, where $Z(S_i,P) = \int_{\mathcal{H}} e^{-m\widehat{er}(h,S_i)}\mathrm{d}P(h)$ is a normalization constant. Then $\forall \delta > 0, C_1 > 1$, with probability at least $1 - \delta$ over the draw of training datasets $\{S_i\}_{i=1}^n$, the following holds for any hyper-posterior Q:

$$er(\mathcal{Q}) \leq \frac{eC_1 \ln C_1}{(C_1 - 1)(e - 1)} \mathbf{E}_{P \sim \mathcal{Q}} \frac{-1}{nm} \sum_{i=1}^n [\ln Z(S_i, P)] \\ + \frac{C_1(\mathcal{K}(\mathcal{Q}, \mathcal{P}) + \ln \frac{2}{\delta})}{n(C_1 - 1)} + \frac{eC_1 \ln C_1(\mathcal{K}(\mathcal{Q}, \mathcal{P}) + \ln \frac{2}{\delta})}{nm(C_1 - 1)(e - 1)}.$$

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		

Closed-Form of Hyper-Posterior when Minimizing Catoni-Bound (II)

Next we can obtain the explicit form of Gibbs optimal hyper-posterior by minimizing the RHS of the inequality in Corollary 3.3.

Corollary 3.4

(Gibbs Optimal Hyper-posterior) For any hyper-prior \mathcal{P} and any training datasets $\{S_i\}_{i=1}^n$, the hyper-posterior \mathcal{Q} that minimizes the PAC-Bayesian meta-learning bound in Corollary 3.3 has the following explicit form:

$$\frac{\mathrm{d}\mathcal{Q}^*}{\mathrm{d}\mathcal{P}}(P) = \exp\{\frac{\beta}{nm}\sum_{i=1}^n \ln Z(S_i, P)\}/Z(\mathbf{S}, \mathcal{P}),$$

where $\beta = \frac{eC_1 \ln C_1}{(C_1 - 1)(e - 1)\alpha}$, $\alpha = \frac{eC_1 \ln C_1}{nm(C_1 - 1)(e - 1)} + \frac{C_1}{n(C_1 - 1)}$, $Z(\mathbf{S}, \mathcal{P}) = \int_{\mathcal{M}_1(\mathcal{H})} \exp\{\frac{\beta}{nm} \sum_{i=1}^n \ln Z(S_i, \mathcal{P})\} d\mathcal{P}(\mathcal{P})$ is a normalization constant.

Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning (ICML2022)

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		
		000			

Fractional Cover of Dependent Data

We introduce two concepts to analyze the meta-learning setting with dependent samples.

Definition 3.5

(Dependence Graph) Let $S = \{\xi_1, \ldots, \xi_K\}$ be a set of K random variables. The dependence graph $\Gamma(S) = (V, E)$ of S is such that: (1) the set of vertices V of $\Gamma(S)$ is $V = [K]\}$. (2) $(i, j) \notin E$ (i.e., there is no edge between i and j) $\Leftrightarrow \xi_i$ and ξ_j are independent.

Definition 3.6

(Fractional Covers [6]) Let $\Gamma = (V, E)$ be an undirected graph with V = [K]. (1) $C \subseteq V$ is independent if the vertices in C are independent (i.e., no two vertices in Care connected). (2) $\mathbf{C} = \{C_j\}_{j=1}^J$, with $C_j \subseteq V$, is a proper cover of V if each C_j is independent and $\bigcup_{j=1}^J C_j = V$. (3) $\mathbf{C} = \{(C_j, w_j)\}_{j=1}^J$, with $C_j \subseteq V$ and $w_j \in [0, 1]$, is a proper exact fractional cover of V if C_j is independent and $\forall i \in V$, $\sum_{j=1}^J w_j \mathbf{1}_{i \in C_j} = 1$; $\mathbf{w}(\mathbf{C}) = \sum_{j=1}^J w_j$ is defined as the chromatic weight of \mathbf{C} . (4) The fractional chromatic number $\chi^*(\Gamma)$ is the minimum chromatic weight over all proper exact fractional covers of the dependence graph $\Gamma = (V, E)$.

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		
		000			

Fast-Rate kl-Bound for Non-Identically Non-Independently Distributed Data

Then we can obtain a chromatic PAC-Bayesian kl-bound with fast convergence rate O(1/K) for dependent random variables.

Theorem 3.7

In the same setting of Theorem 2.2 with the only difference that $S = \{\xi_k\}_{k=1}^K$ is a sequence of dependent random variables. Let $\chi^*(S)$ denote the fractional chromatic number of the dependence graph of S. Then with probability with at least $1 - \delta$ over the draw of S, the following holds for any measure ρ over \mathcal{F} :

$$\mathsf{kl}(\rho(r),\rho(R)) \leq \frac{\chi^*(\mathcal{S})}{\mathcal{K}} [\mathcal{K}(\rho,\pi) + \ln(\frac{2}{\delta}\sqrt{\frac{\mathcal{K}}{\chi^*(\mathcal{S})}})].$$

Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning (ICML2022)

э

・ 回 と く ヨ と く ヨ と

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		
		000			

Fast-Rate kl-Bound for Meta-Learning with Dependent Tasks

Use the above theorem to bound $kl(er(Q), \tilde{er}(Q))$ and $kl(\tilde{er}(Q), \hat{er}(Q))$, we obtain PAC-Bayesian bound for meta-learning with dependent samples.

Theorem 3.8

For any given hyper-prior \mathcal{P} , with probability at least $1 - \delta$ over the draw of the training sample $\{S_i\}_{i=1}^n$, the following holds for any hyper-posterior \mathcal{Q} :

$$er(\mathcal{Q}) \leq \widehat{er}(\mathcal{Q}) + \sqrt{rac{\Delta_1}{2n}} + \sqrt{rac{2\Delta_2 \widehat{er}(\mathcal{Q})}{mn}} + rac{2\Delta_2}{mn},$$

where $\Delta_1 = \chi^*(\mathbf{D})[\mathcal{K}(\mathcal{Q},\mathcal{P}) + \ln(\frac{2}{\delta}\sqrt{\frac{n}{\chi^*(\mathbf{D})}})], \ \Delta_2 = \chi^*(\mathbf{S})[\mathcal{K}(\mathcal{Q},\mathcal{P}) + \mathbf{E}_{P\sim\mathcal{Q}}\sum_{i=1}^n \mathcal{K}(Q_i,P) + \ln\frac{2\sqrt{mn}}{\delta\sqrt{\chi^*(\mathbf{S})}}], \ \chi^*(\mathbf{D}), \chi^*(\mathbf{S}) \ denote \ the \ fractional chromatic numbers of the dependence graphs of <math>\mathbf{D} = \{D_i\}_{i=1}^n, \ \mathbf{S} = \{S_i\}_{i=1}^n.$

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		

Two PAC-Bayesian Bound-Minimization Meta Classification Algorithms

We set isotropic Gaussian for hyper-prior and hyper-posterior: $\mathcal{P}=\mathcal{N}(0,\kappa_{\mathcal{P}}^{2}I_{d\times d}), \mathcal{Q}_{\theta}=\mathcal{N}(\theta,\kappa_{\mathcal{Q}}^{2}I_{d\times d}).$ Then the KL-divergence is

$$\mathcal{K}(\mathcal{Q}_{\theta}, \mathcal{P}) = \frac{||\theta||_2^2 + \kappa_{\mathcal{Q}}^2}{2\kappa_{\mathcal{P}}^2} + \ln \frac{\kappa_{\mathcal{P}}}{\kappa_{\mathcal{Q}}} - \frac{1}{2}$$

We set factorized Gaussian distributions for prior/posterior:

$$\begin{split} & \mathcal{P}_{\theta}(\mathsf{w}) = \prod_{k=1}^{d} \mathcal{N}(\mathsf{w}_k; \mu_{\mathcal{P},k}, \sigma_{\mathcal{P},k}^2), \\ & \mathcal{Q}_{\phi_i}(\mathsf{w}) = \prod_{k=1}^{d} \mathcal{N}(\mathsf{w}_k; u_{i,k}, \sigma_{i,k}^2), \end{split}$$

Then

$$\mathcal{K}(Q_{\phi_{j}}, P_{\theta}) = \frac{1}{2} \sum_{k=1}^{d} \ln \frac{\sigma_{P,k}^{2}}{\sigma_{i,k}^{2}} + \frac{(\sigma_{i,k}^{2} + (\mu_{i,k} - \mu_{P,k})^{2})}{\sigma_{P,k}^{2}}.$$
 To

approximate the expectation $P \sim Q$, we use Monte-Carlo method. The pseudo code is listed in the right column.

 $\begin{array}{c} \textbf{Algorithm 1} \\ \textbf{Catoni-bound-minimizing meta-learning} \\ \textbf{algorithm (meta-training phase)} \end{array}$

- 1: Input: Datasets : S₁, ..., S_n. 2: **Output:** Parameters θ of hyper-posterior Q_{θ} . 3. Initialize: 4: $\theta = (\mu_P, \rho_P) \in \mathbb{R}^{2d}, \phi_i = (\mu_i, \rho_i) \in \mathbb{R}^{2d}, i = 1, ..., n.$ 5: while not converged do for $i \in \{1, ..., n\}$ do 6: Sample a mini-batch S'_i from datasets S_i . 7. 8: Calculate $\mathbf{E}_{P_{A} \sim Q_{A}} \widehat{er}(Q_{i}, S_{i})$ with the mini-batch S' by averaging Monte-Carlo draws. Calculate $\mathcal{K}(\mathcal{Q}_{\theta}, \mathcal{P})$. Q٠ Calculate $\mathbf{E}_{P_{\theta} \sim \mathcal{Q}_{\theta}} \mathcal{K}(Q_{\phi_i}, P_{\theta})$ by averaging 10: Monte-Carlo draws. 11. end for 12. Calculate the meta-training Catoni-bound $\mathbf{E}_{P_{\theta} \sim \mathcal{Q}_{\theta}} \widehat{er}(Q_i, S_i), \qquad \mathcal{K}(\mathcal{Q}_{\theta}, \mathcal{P})$ with and $\mathbf{E}_{P_{\theta} \sim \mathcal{Q}_{\theta}} \mathcal{K}(Q_{\phi_i}, P_{\theta}), i = 1, ..., n.$ Calculate the gradient of Catoni-bound 13. w.r.t $\{\theta, \phi_1, \dots, \phi_n\}$ using backpropagation. Take an optimization step. 14:
 - 15: end while
 - 16: Return θ

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		

Performance on Classification Datasets

Table 4: Comparisons of different PAC-Bayesian meta-learning methods. The averagetest bounds and test errors are reported over 20 test tasks (the \pm shows the 95%confidence interval) in three different pixel-shuffled environments.

	100 Pixels Swaps		200 Pixe	200 Pixels Swaps		300 Pixels Swaps	
Method	Test Bound	Test Error (%)	Test Bound	Test Error (%)	Test Bound	Test Error (%)	
VB	N/A	1.606 ± 0.001	N/A	1.962 ± 0.001	N/A	2.649 ± 0.130	
MAML	N/A	1.876 ± 0.001	N/A	2.241 ± 0.002	N/A	2.788 ± 0.102	
[11, JMLR2002]	0.133 ± 0.034	1.629 ± 0.000	0.285 ± 0.049	1.972 ± 0.001	0.408 ± 0.062	2.523 ± 0.001	
[8, p. ICML2014]	0.190 ± 0.022	1.939 ± 0.001	0.240 ± 0.030	2.631 ± 0.002	0.334 ± 0.036	3.767 ± 0.003	
[1, p. ICML2018]	0.126 ± 0.012	1.587 ± 0.001	0.197 ± 0.019	1.948 ± 0.001	0.270 ± 0.018	2.630 ± 0.001	
[10, p. ICML2021]	0.174 ± 0.023	1.921 ± 0.001	0.224 ± 0.030	2.634 ± 0.001	0.318 ± 0.036	3.754 ± 0.003	
kl-bound (ours)	0.119 ± 0.024	1.746 ± 0.001	0.189 ± 0.027	2.594 ± 0.001	0.359 ± 0.042	2.993 ± 0.002	
Catoni-bound (ours)	$\textbf{0.093} \pm \textbf{0.027}$	$\textbf{1.545} \pm \textbf{0.001}$	$\textbf{0.128} \pm \textbf{0.025}$	$\textbf{1.889} \pm \textbf{0.001}$	$\textbf{0.210} \pm \textbf{0.035}$	$\textbf{2.433} \pm \textbf{0.001}$	

Figure 1: Comparisons between our bounds and others. Both test bounds and test errors are averaged over 20 classification tasks. (1)-(2): Results across a range of number *n* of training tasks. (3)-(4): Results across a range of sample size *m* per_task, a

Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning (ICML2022)

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
			●O		
		000			

Gibbs Optimal Hyper-Posterior (GOHP) Meta Regression Algorithms

We use the inference method SVGD [7] to approximate Q^* as a set of particles $\hat{Q} = \{P_{\phi_1}, \dots, P_{\phi_K}\}$, where P_{ϕ} represents a prior with parameter ϕ . Initially, we sample K particles ϕ_k from \mathcal{P} . Then based on the explicit form of Q^* in Corollary 3.4, we compute the gradient of Q^* w.r.t. ϕ_k :

$$\nabla_{\phi_k} \ln \mathcal{Q}^*(\phi_k) = \nabla_{\phi_k} \ln \mathcal{P}(\phi_k) + \frac{\beta}{nm} \sum_{i=1}^n \nabla_{\phi_k} \ln Z(S_i, P_{\phi_k})$$

where the marginal log-likelihood (MLL) In $Z(S_i, P_{\phi_k})$ is approximated by Monte Carlo estimates. Then we update the particles with the SVGD update rule:

$$\boldsymbol{\phi} \leftarrow \boldsymbol{\phi} + \eta \; \mathbf{K} \; \nabla_{\boldsymbol{\phi}} \ln \tilde{\mathcal{Q}}^* + \nabla_{\boldsymbol{\phi}} \mathbf{K},$$

where $\boldsymbol{\phi} = [\phi_1, ..., \phi_K]^\top$ is the stacked particles matrix, $\nabla_{\boldsymbol{\phi}} \ln \tilde{\mathcal{Q}}^* = [\nabla_{\phi_1} \ln \mathcal{Q}^*(\phi_1), ..., \nabla_{\phi_K} \ln \mathcal{Q}^*(\phi_K)]^\top$ the stacked matrix of gradients, $\mathbf{K} = [k(\phi_k, \phi_{k'})]_{k,k'}$ the kernel matrix induced by the kernel function $k(\cdot, \cdot)$ and η the step size for updates. The Pseudo code for meta-training can be found in Algorithm 2. Algorithm 2 GOHP with SVGD approximation of Q^* (meta-training phase)

- 1: Input: Hyper-prior \mathcal{P} , datasets S_1, \ldots, S_n .
- Hyper-parameter: SVGD kernel function k(·, ·), step size η, scaler factor β.
- 3: Output: Set of priors $\{P_{\phi_1}, ..., P_{\phi_K}\}$.
- 4: Initialize: $\phi := [\phi_1, ..., \phi_K]$, with $\phi_k \sim \mathcal{P}$.
- 5: while not converged do
- 6: **for** k = 1, ..., K **do**
- 7: for i = 1, ..., n do 8: $\ln Z_{i,k} \leftarrow \text{MLL_Estimator}(S_i, P_{\phi_k})$
- 9: end for 10: $\nabla_{\phi_k} \ln \tilde{Q}^* \leftarrow \nabla_{\phi_k} \ln \mathcal{P} + \frac{\beta}{nm} \sum_{i=1}^n \nabla_{\phi_k} \ln Z_{i,k}$
- 11: end for 12: $\phi \leftarrow \phi + \eta \ \mathbf{K} \nabla_{\phi} \ln \tilde{\mathcal{Q}}^* + \nabla_{\phi} \mathbf{K}$ // SVGD update

14: Return $\{P_{\phi_1}, ..., P_{\phi_K}\}$

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		
		000			

Performance on Regression Datasets

Our GOHP algorithm can achieve comparable results with the latest PACOH.

Table 5: Comparison of meta-learning algorithms in terms of test RMSE in 5 regression environments. Reported are mean and standard deviation across 5 seeds. Our GOHP-NN achieves competitive averaged error over 5 environments.

Method	Cauchy	SwissFel	Physionet-GCS	Physionet-HCT	Berkeley-Sensor
Vanilla BNN [7]	0.327 ± 0.008	0.529 ± 0.022	2.664 ± 0.274	$\textbf{3.938} \pm \textbf{0.869}$	0.109 ± 0.004
MLL-GP [4]	0.216 ± 0.003	0.974 ± 0.093	1.654 ± 0.094	2.634 ± 0.144	0.058 ± 0.002
MLAP [1]	0.219 ± 0.004	0.486 ± 0.026	2.009 ± 0.248	$\textbf{2.470} \pm \textbf{0.039}$	0.050 ± 0.005
MAML [3]	0.219 ± 0.004	0.730 ± 0.057	1.895 ± 0.141	$\textbf{2.413} \pm \textbf{0.113}$	0.045 ± 0.003
BMAML [12]	0.225 ± 0.004	0.577 ± 0.044	1.894 ± 0.062	2.500 ± 0.002	0.073 ± 0.014
PACOH-GP [10]	0.209 ± 0.008	0.376 ± 0.024	$\textbf{1.498} \pm \textbf{0.081}$	$\textbf{2.361} \pm \textbf{0.047}$	0.065 ± 0.005
PACOH-NN [10]	$\textbf{0.195} \pm \textbf{0.001}$	0.372 ± 0.002	1.561 ± 0.061	2.405 ± 0.017	$\textbf{0.043} \pm \textbf{0.001}$
GOHP-NN (ours)	0.198 ± 0.016	$\textbf{0.333} \pm \textbf{0.013}$	1.521 ± 0.067	2.422 ± 0.013	$\textbf{0.043} \pm \textbf{0.004}$

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		
		000			

Conclusions and Future Works

Our contributions are four-fold:

(1) This work provides a unified demonstration framework of the PAC-Bayesian bounds for single-task learning and meta-learning, extending the tightest PAC-Bayesian kl-bound and Catoni-bound to the meta-learning setting, followed by two bound-minimizing meta-learning classification algorithms.

(2) We show how to obtain the closed-form formula of the Gibbs optimal hyper-posterior by minimizing our Catoni-bound, leading to an efficient meta-learning regression algorithm.

(3) We obtain a fast-rate chromatic PAC-Bayesian kl-bound for the more challenging meta-learning setting where training data show some dependencies.

(4) Experiments further validate the effectiveness of our proposed PAC-Bayesian bounds. In particular, our Catoni-bound obtains the tightest test bounds and the lowest test errors in classification problems, and achieves comparable results with existing methods in regression problems.

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		
		000			

References

- Ron Amit and Ron Meir. "Meta-Learning by Adjusting Priors Based on Extended PAC-Bayes Theory". In: International Conference on Machine Learning (ICML). 2018, pp. 205–214.
- [2] Daniel Berend and Tamir Tassa. "Efficient Bounds on Bell Numbers and on Moments of Sums of Random Variables". In: *Probability and Mathematical Statistics* 30 (2010), pp. 185–205.
- [3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: *International Conference on Machine Learning (ICML)*. 2017, pp. 1126–1135.

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		

List of References

- [4] Vincent Fortuin and Gunnar Rätsch. "Deep Mean Functions for Meta-Learning in Gaussian Processes". In: arXiv preprint arXiv:1901.08098 (2019).
- [5] Pascal Germain et al. "PAC-Bayesian learning of linear classifiers". In: International Conference on Machine Learning (ICML). 2009, pp. 353–360.
- [6] Svante Janson. "Large deviations for sums of partly dependent random variables". In: *Random Structures & Algorithms* 24.3 (2004), pp. 234–248.
- [7] Qiang Liu and Dilin Wang. "Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm". In: Advances in Neural Information Processing Systems (NeurIPS). 2016, pp. 2370–2378.

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		
		000			

List of References

- [8] Anastasia Pentina and Christoph H. Lampert. "A PAC-Bayesian bound for Lifelong Learning". In: International Conference on Machine Learning (ICML). 2014, pp. 991–999.
- [9] Anastasia Pentina and Christoph H. Lampert. "Lifelong Learning with Non-i.i.d. Tasks". In: Advances in Neural Information Processing Systems (NeurIPS). 2015, pp. 1540–1548.
- [10] Jonas Rothfuss et al. "PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees". In: International Conference on Machine Learning (ICML). 2021, pp. 9116–9126.
- [11] Matthias W. Seeger. "PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification". In: *Journal of Machine Learning Research (JMLR)* 3 (2002), pp. 233–269.

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		00	00		

List of References

[12] Jaesik Yoon et al. "Bayesian Model-Agnostic Meta-Learning". In: Advances in Neural Information Processing Systems (NeurIPS). 2018, pp. 7343–7353.

Background	Motivation	Improved PAC-Bayesian Bounds	Algorithms and Experiments	Conclusions	References
		000	00		
		000			

Thanks!

Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning (ICML2022)