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PAC-Bayesian Bounds for Single-Task Learning

Table 1: Notations of PAC-Bayesian single-task learning. The loss
` : H×Z → [0, 1]. êr(Q,S) = Eh∼Q

1
m

∑m
i=1 `(h, zi ),

er(Q,D) = Eh∼QEz∼D`(h, z). KL-divergences
K(Q,P) = Eh∼Q ln dQ

dP , kl(p, q) = p ln p
q + (1− p) ln 1−p

1−q .

Unknown Task D ∈M1(Z) Hypothesis Space H
Prior P ∈M1(H) Posterior Q ∈M1(H)

Empirical Error êr(Q, S) Expected Error er(Q,D)

Theorem 1.1

[5] [Corollary 2.1-2.2] Let ` be {0, 1}-valued loss. ∀ fixed prior P, δ, λ > 0,
with probability ≥ 1− δ over i.i.d. S, for any posterior Q ∈M1(H):

kl(êr(Q, S), er(Q,D)) ≤ K(Q,P) + ln (2
√

m/δ)

m
,

er(Q,D) ≤ λ

m(1−e−λ/m)
êr(Q, S)+

K(Q,P)+ln(1/δ)

m(1− e−λ/m)
.
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PAC-Bayesian Framework for Meta-Learning

Table 2: Notations of PAC-Bayesian meta-learning. The training sample
S = {Si}ni=1, where Si is the dataset in the i-th training task and is formed by
sampling m times from distribution Di , where Di ∼ τ . Q(S ,P) is the output

posterior by running algorithm with sample S and prior P as input.

Sample S ∈ Zm

Training Set S = {Si}ni=1 ∈ (Zm)n

Task Environment τ ∈M1(M1(Z))

Hyper-Prior P ∈M1(M1(H))

Hyper-Posterior Q ∈M1(M1(H))

Empirical Multi-Task Error êr(Q) = EP∼Q1/n
∑n

i=1 êr(Q(Si ,P),Si )

Expected Multi-Task Error ẽr(Q) = EP∼Q1/n
∑n

i=1 er(Q(Si ,P),Di )

Transfer Error er(Q) = EP∼QED∼τES∼Dmer(Q(S ,P),D)

The goal of PAC-Bayesian meta-learning theory is thus to give a
generalization bound on the transfer error er(Q) based on êr(Q).
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Background Motivation Improved PAC-Bayesian Bounds Algorithms and Experiments Conclusions References

The Limitation of Existing PAC-Bayesian
Bounds for Meta-Learning

To give PAC-Bayesian bounds for meta-learning, we need to choose convex
function D(p, q) and then bound the moment generating function (MGF)
of D(p, q) (i.e., E exp{D(er(Q), ẽr(Q))} and E exp{D(ẽr(Q), êr(Q))}).

Almost all existing works [8, 9, 10] set D(p, q) = p − q, apply
Hoeffding’s lemma to bound the MGF of D(p, q), and finally obtain a
PAC-Bayesian meta learning bound of O(1/t + t/K )(∀t > 0), which
suffers a slow convergence rate of O(1/

√
K ) (K > 0), where K is the

number of observations.
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Motivation of Our Fast-Rate PAC-Bayesian
Bounds

In contrast, we set D(p, q) as kl(q, p) or 1Φλ
K

(p)− q, (λ > 0), as what we do to obtain the

PAC-Bayesian kl-bound and Catoni-bound in single-task learning. However, since ẽr(Q) and
êr(Q) are the summations of independent [0, 1]-valued random variables (not i.i.d. {0, 1}-valued
ones as in Theorem 1.1), we can not directly apply the results in Theorem 1.1 to bound the MGF
of D(p, q). To overcome this challenge, we use the following lemma to bound the expectation of
the function of the sum of independent [0, 1]-valued random variables (rvs) with the expectation
of the function of the sum of i.i.d. {0, 1}-valued ones. Such result is originated from [2].

Lemma 2.1

Let {ξk}Kk=1 be a sequence of independent random variables with P(0 ≤ ξk ≤ 1) = 1, and

{ηk}Kk=1 be a sequence of i.i.d. Bernoulli random variables with Eηk = K−1(
∑K

k=1 Eξk ). Then
for any convex function g,

Eg(
1

K

K∑
k=1

ξk ) ≤ Eg(
1

K

K∑
k=1

ηk ).
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Extending PAC-Bayesian kl-Bound and
Catoni-Bound to the Independent Setting

Theorem 2.2

Let F be a set of rvs f . Let S = {ξk}Kk=1 be a sequence of random variables with each
component ξk (k ∈ [K ]) drawn independently according to the measure µk over the set Ak .
Let R(f ) = 1

K

∑K
k=1 Eξk gk(f , ξk), r(f ) = 1

K

∑K
k=1 gk(f , ξk), where gk : F × Ak → [0, 1]

is a bounded function. Denote Ef∼ρ(R(f )),Ef∼ρ(r(f )) by ρ(R), ρ(r) respectively. Then
∀δ > 0, λ > 0, ∀ fixed π ∈ M1(F), with probability ≥ 1− δ over S, the following holds
for any measure ρ over F :

kl(ρ(r), ρ(R)) ≤ K(ρ, π) + ln (2
√

K/δ)

K
,

ρ(R) ≤ λρ(r)

K(1− e−λ/K )
+
K(ρ, π) + ln(1/δ)

K(1− e−λ/K )
.

Proof Sketch. Note that D(ρ(R), ρ(r)) ≤ 1
λ

[
K(ρ, π) + ln Ef∼πESe

λD(R(f ),r(f ))/δ
]

holds with high probability for any

convex function D(·, ·). With Lemma 2.1 we can bound ESe
λD(R(f ),r(f )) with the MGF of convex function of the sum of

i.i.d. Bernoulli rvs. Setting D(p, q) as kl(q, p) or Φλ/K (p)− q, and using Theorem 1.1 finish the proof. �
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Fast-Rate PAC-Bayesian kl-Bound for
Meta-Learning

Apply the kl-bound in Theorem 2.2 to bound kl(er(Q), ẽr(Q)) and
kl(ẽr(Q), êr(Q)) respectively, and use the union bound, we have

Theorem 3.1

For any predefined hyper-prior P, with probability at least 1−δ over the draw
of the training sample {Si}ni=1, the following holds for any hyper-posterior
Q:

er(Q)≤ êr(Q) +

√
K(Q,P)+ln 2

√
n
δ

2n
+

√
2∆êr(Q)

mn
+

2∆

mn
,

where ∆ = K(Q,P) + EP∼Q
∑n

i=1K(Qi ,P) + ln 2
√
mn
δ .
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Fast-Rate PAC-Bayesian Catoni-Bound for
Meta-Learning

Apply the Catoni-bound in Theorem 2.2 to bound er(Q)− ẽr(Q) and
ẽr(Q)− êr(Q) respectively, and use the union bound, we have

Theorem 3.2

For any predefined hyper-prior P, any δ ∈ (0, 1), any C1,C2 > 1, with
probability at least 1− δ over the draw of the training sample {Si}ni=1, the
following holds for any hyper-posterior Q:

er(Q) ≤ C1C2 ln C1 ln C2

(C1 − 1)(C2 − 1)
êr(Q)+

C1

(
K(Q,P) + ln(2/δ)

)
n(C1 − 1)

+
C1C2 ln C1

(
K(Q,P)+EP∼Q

∑n
i=1K(Qi ,P)+ln(2/δ)

)
(C1 − 1)(C2 − 1)nm

.
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Comparisons between Different PAC-Bayesian
Bounds for Meta-Learning

Table 3: Different PAC-Bayesian meta-learning bounds on er(Q). Bound =
Empirical Error + Environment-level Complexity + Task-level Complexity.
n is the number of training tasks. m is the sample size per task. n is the number

of training tasks. m is the sample size per task. P,Q are the hyper-prior and
hyper-posterior respectively. In our Catoni-bound, the constant C > 1.

Classical Bounds Empirical Error Environment-Level Complexity Task-Level Complexity

[8, p. ICML2014] êr(Q) O
(K(Q,P)√

n

)
O
(K(Q,P)+

∑n
i=1 EP∼QK(Qi ,P)

n
√
m

+ 1√
m

)
[1, p. ICML2018] êr(Q) O

(√K(Q,P)+ln n
n

)
O
(

1
n

∑n
i=1

√
K(Q,P)+EP∼QK(Qi ,P)+ln (2nm)

m

)
[10, p. ICML2021] êr(Q) O

(K(Q,P)√
n

)
O
(K(Q,P)+

∑n
i=1 EP∼QK(Qi ,P)

n
√
m

+ 1√
n

)
kl-bound (ours) êr(Q) O

(√K(Q,P)+ln
√
n

n

)
O
(K(Q,P)+EP∼Q

∑n
i=1K(Qi ,P)+ln

√
nm

mn

)
Catoni-bound (ours) C êr(Q) O

(K(Q,P)
n

)
O
(K(Q,P)+EP∼Q

∑n
i=1K(Qi ,P)

mn

)
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Closed-Form of Hyper-Posterior when
Minimizing Catoni-Bound (I)

We first give a corollary of Theorem 3.2 by choosing the Gibbs optimal
posterior for each training task.

Corollary 3.3

∀i ∈ [n], any prior P ∈ M1(H), any training data {Si}ni=1, let Q∗i be

the Gibbs optimal posterior such that
dQ∗i
dP = exp{−mêr(h, Si )}/Z (Si ,P),

where Z (Si ,P) =
∫
H e−mêr(h,Si )dP(h) is a normalization constant. Then

∀δ > 0,C1 > 1, with probability at least 1 − δ over the draw of training
datasets {Si}ni=1, the following holds for any hyper-posterior Q:

er(Q) ≤ eC1 ln C1

(C1 − 1)(e− 1)
EP∼Q

−1

nm

n∑
i=1

[ln Z(Si ,P)]

+
C1

(
K(Q,P) + ln 2

δ

)
n(C1 − 1)

+
eC1 ln C1

(
K(Q,P) + ln 2

δ

)
nm(C1 − 1)(e− 1)

.
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Closed-Form of Hyper-Posterior when
Minimizing Catoni-Bound (II)

Next we can obtain the explicit form of Gibbs optimal hyper-posterior by
minimizing the RHS of the inequality in Corollary 3.3.

Corollary 3.4

(Gibbs Optimal Hyper-posterior) For any hyper-prior P and any training
datasets {Si}ni=1, the hyper-posterior Q that minimizes the PAC-Bayesian
meta-learning bound in Corollary 3.3 has the following explicit form:

dQ∗

dP
(P) = exp{ β

nm

n∑
i=1

ln Z (Si ,P)}/Z (S,P),

where β = eC1 lnC1
(C1−1)(e−1)α , α = eC1 lnC1

nm(C1−1)(e−1) + C1
n(C1−1) , Z (S,P) =∫

M1(H) exp{ β
nm

∑n
i=1 ln Z (Si ,P)}dP(P) is a normalization constant.
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Fractional Cover of Dependent Data

We introduce two concepts to analyze the meta-learning setting with dependent samples.

Definition 3.5

(Dependence Graph) Let S = {ξ1, . . . , ξK} be a set of K random variables. The de-
pendence graph Γ(S) = (V ,E) of S is such that: (1) the set of vertices V of Γ(S)
is V = [K ]}. (2) (i , j) /∈ E (i.e., there is no edge between i and j) ⇔ ξi and ξj are
independent.

Definition 3.6

(Fractional Covers [6]) Let Γ = (V ,E) be an undirected graph with V = [K ]. (1)
C ⊆ V is independent if the vertices in C are independent (i.e., no two vertices in C
are connected). (2) C = {Cj}Jj=1, with Cj ⊆ V , is a proper cover of V if each Cj is

independent and
⋃J

j=1 Cj = V . (3) C = {(Cj ,wj)}Jj=1, with Cj ⊆ V and wj ∈ [0, 1], is a

proper exact fractional cover of V if Cj is independent and ∀i ∈ V ,
∑J

j=1 wj1i∈Cj = 1;

w(C) =
∑J

j=1 wj is defined as the chromatic weight of C. (4) The fractional chromatic
number χ∗(Γ) is the minimum chromatic weight over all proper exact fractional covers of
the dependence graph Γ = (V ,E).

Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning (ICML2022) Jiechao Guan, Zhiwu Lu
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Fast-Rate kl-Bound for Non-Identically
Non-Independently Distributed Data

Then we can obtain a chromatic PAC-Bayesian kl-bound with fast
convergence rate O(1/K ) for dependent random variables.

Theorem 3.7

In the same setting of Theorem 2.2 with the only difference that S =
{ξk}Kk=1 is a sequence of dependent random variables. Let χ∗(S) denote
the fractional chromatic number of the dependence graph of S. Then with
probability with at least 1 − δ over the draw of S, the following holds for
any measure ρ over F :

kl(ρ(r), ρ(R)) ≤ χ∗(S)

K
[K(ρ, π) + ln(

2

δ

√
K

χ∗(S)
)].
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Fast-Rate kl-Bound for Meta-Learning with
Dependent Tasks

Use the above theorem to bound kl(er(Q), ẽr(Q)) and kl(ẽr(Q), êr(Q)),
we obtain PAC-Bayesian bound for meta-learning with dependent samples.

Theorem 3.8

For any given hyper-prior P, with probability at least 1− δ over the draw of
the training sample {Si}ni=1, the following holds for any hyper-posterior Q:

er(Q) ≤ êr(Q) +

√
∆1

2n
+

√
2∆2êr(Q)

mn
+

2∆2

mn
,

where ∆1 = χ∗(D)[K(Q,P) + ln( 2
δ

√
n

χ∗(D) )], ∆2 = χ∗(S)
[
K(Q,P) +

EP∼Q
∑n

i=1K(Qi ,P) + ln 2
√
mn

δ
√
χ∗(S)

]
, χ∗(D), χ∗(S) denote the fractional

chromatic numbers of the dependence graphs of D = {Di}ni=1, S = {Si}ni=1.
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Two PAC-Bayesian Bound-Minimization Meta
Classification Algorithms
We set isotropic Gaussian for hyper-prior and hyper-posterior:
P = N (0, κ2

P Id×d ),Qθ = N (θ, κ2
QId×d ). Then the

KL-divergence is

K(Qθ,P) =
||θ||22 + κ2

Q
2κ2
P

+ ln
κP

κQ
−

1

2
.

We set factorized Gaussian distributions for prior/posterior:

Pθ(w) =
d∏

k=1

N (wk ;µP,k , σ
2
P,k ),

Qφi
(w) =

d∏
k=1

N (wk ; ui,k , σ
2
i,k ),

Then

K(Qφi
, Pθ) = 1

2

∑d
k=1 ln

σ2
P,k

σ2
i,k

+
(σ2

i,k+(µi,k−µP,k )2)

σ2
P,k

. To

approximate the expectation P ∼ Q, we use Monte-Carlo
method. The pseudo code is listed in the right column.

Algorithm 1 Catoni-bound-minimizing meta-learning
algorithm (meta-training phase)

1: Input: Datasets : S1, ..., Sn .
2: Output: Parameters θ of hyper-posterior Qθ .
3: Initialize:
4: θ = (µP , ρP ) ∈ R2d , φi = (µi , ρi ) ∈ R2d , i = 1, ..., n.
5: while not converged do
6: for i ∈ {1, ..n} do
7: Sample a mini-batch S′i from datasets Si .
8: Calculate EPθ∼Qθ êr(Qi , Si ) with the mini-batch

S′i by averaging Monte-Carlo draws.
9: Calculate K(Qθ,P).

10: Calculate EPθ∼QθK(Qφi
, Pθ) by averaging

Monte-Carlo draws.
11: end for
12: Calculate the meta-training Catoni-bound

with EPθ∼Qθ êr(Qi , Si ), K(Qθ,P) and

EPθ∼QθK(Qφi
, Pθ), i = 1, ..., n.

13: Calculate the gradient of Catoni-bound w.r.t
{θ, φ1, ..., φn} using backpropagation.

14: Take an optimization step.
15: end while
16: Return θ

Fast-Rate PAC-Bayesian Generalization Bounds for Meta-Learning (ICML2022) Jiechao Guan, Zhiwu Lu
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Performance on Classification Datasets
Table 4: Comparisons of different PAC-Bayesian meta-learning methods. The average

test bounds and test errors are reported over 20 test tasks (the ± shows the 95%
confidence interval) in three different pixel-shuffled environments.

100 Pixels Swaps 200 Pixels Swaps 300 Pixels Swaps

Method Test Bound Test Error (%) Test Bound Test Error (%) Test Bound Test Error (%)

VB N/A 1.606± 0.001 N/A 1.962± 0.001 N/A 2.649± 0.130

MAML N/A 1.876± 0.001 N/A 2.241± 0.002 N/A 2.788± 0.102

[11, JMLR2002] 0.133± 0.034 1.629± 0.000 0.285± 0.049 1.972± 0.001 0.408± 0.062 2.523± 0.001

[8, p. ICML2014] 0.190± 0.022 1.939± 0.001 0.240± 0.030 2.631± 0.002 0.334± 0.036 3.767± 0.003

[1, p. ICML2018] 0.126± 0.012 1.587± 0.001 0.197± 0.019 1.948± 0.001 0.270± 0.018 2.630± 0.001

[10, p. ICML2021] 0.174± 0.023 1.921± 0.001 0.224± 0.030 2.634± 0.001 0.318± 0.036 3.754± 0.003

kl-bound (ours) 0.119± 0.024 1.746± 0.001 0.189± 0.027 2.594± 0.001 0.359± 0.042 2.993± 0.002

Catoni-bound (ours) 0.093± 0.027 1.545± 0.001 0.128± 0.025 1.889± 0.001 0.210± 0.035 2.433± 0.001
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Figure 1: Comparisons between our bounds and others. Both test bounds and test
errors are averaged over 20 classification tasks. (1)-(2): Results across a range of

number n of training tasks. (3)-(4): Results across a range of sample size m per task.
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Gibbs Optimal Hyper-Posterior (GOHP) Meta
Regression Algorithms

We use the inference method SVGD [7] to approximate Q∗ as

a set of particles Q̂ = {Pφ1
, . . . , PφK

}, where Pφ represents

a prior with parameter φ. Initially, we sample K particles φk
from P. Then based on the explicit form of Q∗ in
Corollary 3.4, we compute the gradient of Q∗ w.r.t. φk :

∇φk lnQ∗(φk )=∇φk lnP(φk )+
β

nm

n∑
i=1

∇φk ln Z(Si , Pφk
)

where the marginal log-likelihood (MLL) ln Z(Si , Pφk
) is

approximated by Monte Carlo estimates. Then we update the
particles with the SVGD update rule:

φ← φ + η K ∇φ lnQ̃∗ +∇φK,

where φ = [φ1, ..., φK ]> is the stacked particles matrix,

∇φ lnQ̃∗ = [∇φ1
lnQ∗(φ1), ...,∇φK lnQ∗(φK )]> the

stacked matrix of gradients, K = [k(φk , φk′ )]k,k′ the kernel

matrix induced by the kernel function k(·, ·) and η the step size
for updates. The Pseudo code for meta-training can be found in
Algorithm 2.

Algorithm 2 GOHP with SVGD approximation of Q∗
(meta-training phase)

1: Input: Hyper-prior P, datasets S1, ..., Sn .
2: Hyper-parameter: SVGD kernel function k(·, ·), step size η,

scaler factor β.
3: Output: Set of priors {Pφ1

, ..., PφK
}.

4: Initialize: φ := [φ1, ..., φK ] , with φk ∼ P.
5: while not converged do
6: for k = 1, ...,K do
7: for i = 1, ..., n do
8: ln Zi,k ← MLL Estimator(Si , Pφk

)

9: end for
10: ∇φk ln Q̃∗ ← ∇φk lnP+ β

nm

∑n
i=1∇φk ln Zi,k

11: end for
12: φ← φ + η K ∇φ lnQ̃∗ +∇φK // SVGD update
13: end while
14: Return {Pφ1

, ..., PφK
}
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Performance on Regression Datasets

Our GOHP algorithm can achieve comparable results with the latest PACOH.

Table 5: Comparison of meta-learning algorithms in terms of test RMSE in 5
regression environments. Reported are mean and standard deviation across 5

seeds. Our GOHP-NN achieves competitive averaged error over 5 environments.

Method Cauchy SwissFel Physionet-GCS Physionet-HCT Berkeley-Sensor

Vanilla BNN [7] 0.327± 0.008 0.529± 0.022 2.664± 0.274 3.938± 0.869 0.109± 0.004

MLL-GP [4] 0.216± 0.003 0.974± 0.093 1.654± 0.094 2.634± 0.144 0.058± 0.002

MLAP [1] 0.219± 0.004 0.486± 0.026 2.009± 0.248 2.470± 0.039 0.050± 0.005

MAML [3] 0.219± 0.004 0.730± 0.057 1.895± 0.141 2.413± 0.113 0.045± 0.003

BMAML [12] 0.225± 0.004 0.577± 0.044 1.894± 0.062 2.500± 0.002 0.073± 0.014

PACOH-GP [10] 0.209± 0.008 0.376± 0.024 1.498± 0.081 2.361± 0.047 0.065± 0.005

PACOH-NN [10] 0.195± 0.001 0.372± 0.002 1.561± 0.061 2.405± 0.017 0.043± 0.001

GOHP-NN (ours) 0.198± 0.016 0.333± 0.013 1.521± 0.067 2.422± 0.013 0.043± 0.004
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Conclusions and Future Works

Our contributions are four-fold:

(1) This work provides a unified demonstration framework of the PAC-Bayesian
bounds for single-task learning and meta-learning, extending the tightest
PAC-Bayesian kl-bound and Catoni-bound to the meta-learning setting, followed
by two bound-minimizing meta-learning classification algorithms.

(2) We show how to obtain the closed-form formula of the Gibbs optimal
hyper-posterior by minimizing our Catoni-bound, leading to an efficient
meta-learning regression algorithm.

(3) We obtain a fast-rate chromatic PAC-Bayesian kl-bound for the more
challenging meta-learning setting where training data show some dependencies.

(4) Experiments further validate the effectiveness of our proposed PAC-Bayesian

bounds. In particular, our Catoni-bound obtains the tightest test bounds and the

lowest test errors in classification problems, and achieves comparable results with

existing methods in regression problems.
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