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▪ Increasingly complex systems with safety requirements
- Accurate model + error estimate required

▪ Gaussian processes promising

▪ Control, Bayesian optimization
e.g., Ostafew at al. (2016), Berkenkamp et al. (2017), Umlauft and Hirche
(2019), Kirschner et al. (2019)…
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Model Error Bounds for Gaussian Processes

▪ GP error bound given hyperparameters, (Srinivas et al., 2012), (Lederer et al., 2019)

Prior knowledge of hyperparameters required
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Prior knowledge of hyperparameters required

𝑃 𝑓 𝑥 − 𝜇 𝑥 ≤ 𝛽𝜎(𝑥) ∀𝑥 ∈ Ω ≥ 1 − 𝛿

Log-likelihood min. fundamentally wrong for classical bounds



Model Error Bounds for Gaussian Processes

Idea: Bayesian view on training → conservative posterior variance for error bound
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Novel robust uniform error bound for 
unknown hyperparameters:

Can easily replace bounds in standard GP-based algorithms.

Easy to compute and scalable.

Same excellent regression performance as likelihood-optimal.



Novel hyperparameter training superior for safety-critical applications

Robust Performance Certificates for Real-World Applications

▪ Validation with several benchmark data sets with different level of sparsity 
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Also in the paper…

▪ Full theoretical results

▪ Theoretical guarantees for control problem

▪ Comparisons across different benchmark
data sets, also with full Bayes 

▪ Numerical control example

and much more…
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