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Motivation: Gaussian Processes for Safety-Critical Settings

" |ncreasingly complex systems with safety requirements
- Accurate model + error estimate required
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p(f(xM)|x*, D) = N (u(x"),a”(x"))
7N

Posterior mean Posterior variance
contains epistemic uncertainty

© Tecnalia

T



Motivation: Gaussian Processes for Safety-Critical Settings

= |ncreasingly complex systems with safety requirements
- Accurate model + error estimate required

= Gaussian processes promising

Training data set
p(f(xM)|x*, D) = N (u(x"),a”(x"))
7N

Posterior mean Posterior variance
contains epistemic uncertainty

= Control, Bayesian optimization
e.g., Ostafew at al. (2016), Berkenkamp et al. (2017), Umlauft and Hirche
(2019), Kirschner et al. (2019)...
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Model Error Bounds for Gaussian Processes

= GP error bound given hyperparameters, (Srinivas et al., 2012), (Lederer et al., 2019)

P(f(x) —u(x)| < po(x) vx€) =216

\

Prior knowledge of hyperparameters required
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Prior knowledge of hyperparameters required

= Log likelihood optimization chooses most t Likelihood optimal
~| over-confident \ .
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likely model ’ -
= Uncertainty about other models ignored

Log-likelihood min. fundamentally wrong for classical bounds
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Model Error Bounds for Gaussian Processes

Idea: Bayesian view on training = conservative posterior variance for error bound

~ Novel robust uniform error bound for
D, o unknown hyperparameters:
. 1 ._ ~
| confidence} | P(lf(x) —ux)| < Pf5(x) VxeEQ)=1—-6
/ Hyperparameter 9
Conservative  Likelihood optimal Conservative variance from training data
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Model Error Bounds for Gaussian Processes

Idea: Bayesian view on training = conservative posterior variance for error bound

~ Novel robust uniform error bound for
D, o unknown hyperparameters:
Q‘ I ._ I -
| confidence} | - P(fx)—pux)| <Pi(x) vxeQ)=1-6
i Hyperparameter 9
Conservative  Likelihood optimal Conservative variance from training data

Same excellent regression performance as likelihood-optimal.

Easy to compute and scalable.

Can easily replace bounds in standard GP-based algorithms.
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Robust Performance Certificates for Real-World Applications

= Validation with several benchmark data sets with different level of sparsity

SARCOS arm (21 dim) 100%
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Novel hyperparameter training superior for safety-critical applications
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Also in the paper...

= Full theoretical results
* Theoretical guarantees for control problem

= Comparisons across different benchmark
data sets, also with full Bayes

= Numerical control example

and much more...

DATA SET BSTNso BSTNuso MLso MLsoo WINE200 WINE1000
DIMENSION d=13 d=13 d=1 d=1 d=11 d=11
OUR APPROACH 0.19 0.35 0.00 0.00 0.01 0.01
VANILLA GP 0.41 0.48 0.11 0.01 0.04 0.04
FUuLL BAYES 0.36 0.44 0.00 0.00 0.04 0.04
=
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