

Matching Structure for Dual Learning

ICML 2022

Hao Fei, Shengqiong Wu, Yafeng Ren, Meishan Zhang

Sea-NExT Joint Lab, National University of Singapore, Singapore Guangdong University of Foreign Studies, China Harbin Institute of Technology (Shenzhen), China

Motivation

> Dual Learning

- ✓ Many *NLP/CV/Multimodal* tasks appear in dual forms.
 - The primal and dual tasks have the same exact input and output but in reverse.

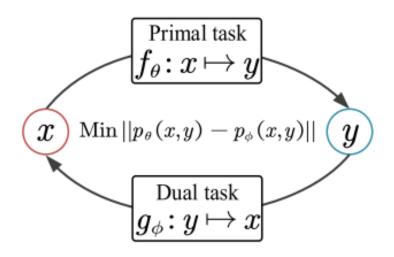
✓ Dual learning scheme

• Modeling the duality between the task pair, by minimizing the gap between joint distributions of the two tasks respectively.

$$p_{\theta}(x,y) = p(x)p(y|x;\theta)$$

$$\simeq p_{\phi}(x,y) = p(y)p(x|y;\phi), \forall x \& y,$$

Duality Scheme	Direction	Representative Application(s)
Text↔Text	\longrightarrow or \longleftarrow	Neural Machine Translation, Paraphrase Generation
Taut	\longrightarrow	Text-to-Image Synthesis
Text↔Image	\leftarrow	Image Captioning
Text↔Label	\longrightarrow	Text Classification
rext⇔Laber	\leftarrow	Conditioned Text Generation
Imaga/\I ahal	\longrightarrow	Image Classification
Image↔Label	←—	Conditioned Image Generation
Image↔Image	\longrightarrow or \longleftarrow	Image Translation

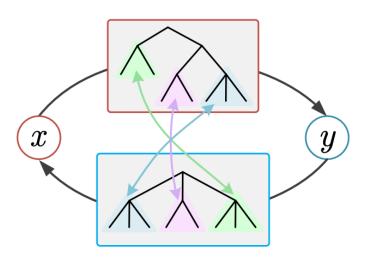


Motivation

> Existing Problem

✓ Current dual learning fails to explicitly model the **structural correspondence** between two coupled tasks.

- ✓ Structure features are important to many learning tasks:
 - neural machine translation
 - paraphrase generation
 - conditioned text generation
 - ..

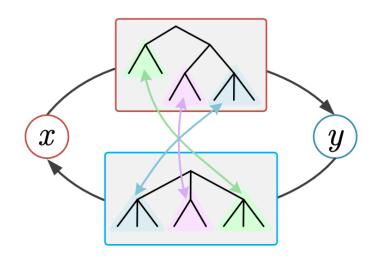


> Our proposal

◆ Matching Structure for Dual Learning

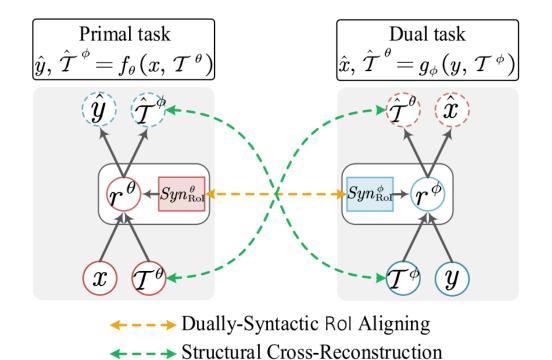
✓ *Core idea:*

Based on the vanilla, dual learning framework, we perform structural alignment unsupvervisedly between the primal and dual tasks, bridging them with structure connections.



Dually-Syntactic Structure Matching for Text ↔ Text Dual Learning

• Symmetrically syntactic structure matching for dual learning



 $\mathcal{L}(\theta,\phi) = \mathcal{L}_C + \lambda_1 \mathcal{L}_D + \lambda_2 \mathcal{L}_M + \lambda_3 \mathcal{L}_R$

• Task learning of two coupled tasks

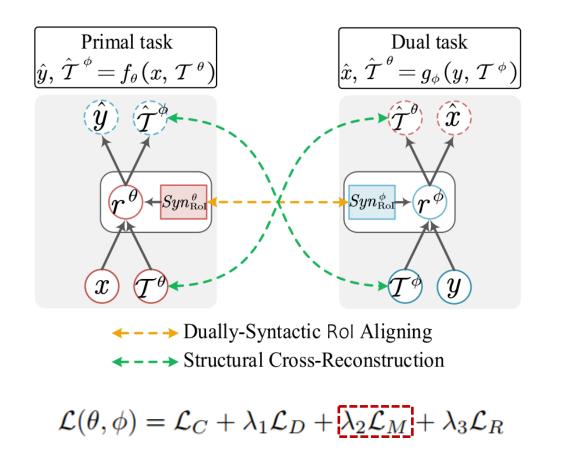
$$\mathcal{L}_{ heta} = \mathbb{E}_{x,y} \, \log p(y|x; heta) \,,$$
 $\mathcal{L}_{\phi} = \mathbb{E}_{x,y} \, \log p(x|y; \phi) \,.$ $\mathcal{L}_{C} = \mathcal{L}_{ heta} + \mathcal{L}_{\phi}.$

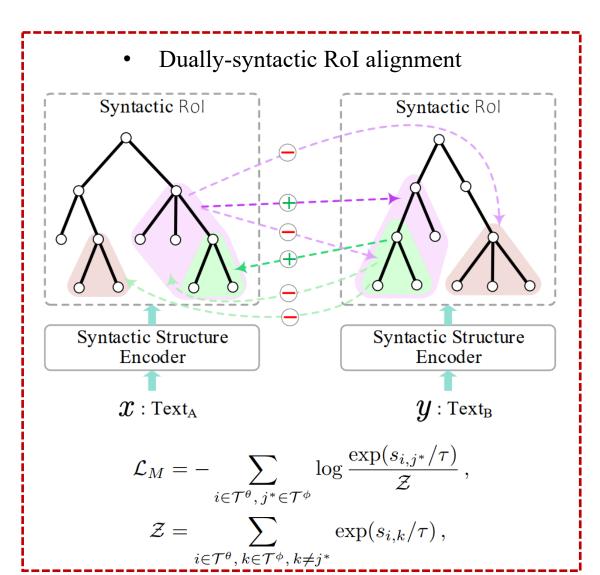
Dual learning backbone

$$\mathcal{L}_D = ||\log \hat{p}(x) + \log p(y|x;\theta) - \log \hat{p}(y) - \log p(x|y;\phi)||,$$

Dually-Syntactic Structure Matching for Text ↔ Text Dual Learning

• Symmetrically syntactic structure matching for dual learning





VP

VBG

playing

NP

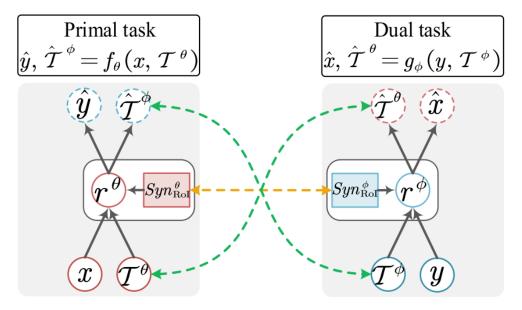
NN

tennis

VBZ

Dually-Syntactic Structure Matching for Text ← Text Dual Learning

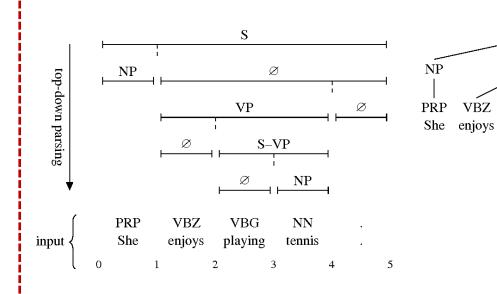
Symmetrically syntactic structure matching for dual learning



← - - → Dually-Syntactic Rol Aligning ← - - → Structural Cross-Reconstruction

 $\mathcal{L}(\theta, \phi) = \mathcal{L}_C + \lambda_1 \mathcal{L}_D + \lambda_2 \mathcal{L}_M + \lambda_3 \mathcal{L}_R$

Structural Cross-Reconstruction



$$\mathcal{L}_R = \mathcal{L}_R^{\theta} + \mathcal{L}_R^{\phi}$$
.

> Exp-I: Text↔Text Applications

1) Comparing M2 to M1 and M4 to M3:

✓ the integration of syntactic structure results in better performances, either for the singleton or dual learning

2) Comparing M3 to M1:

✓ the dual learning technique improves the task performances consistently

3) Comparing M4 to ONLYSYN:

✓ high efficacy of the structural matching proposal

4) Comparing M4-SALN vs. M4-SyRec:

✓ the RoI alignment mechanism plays the predominant influences than the syntactic structure reconstruction mechanism

		ParaNMT			QUORA								
		В	R-1	R-2	R-L	В	R-1	В	R-1	R-2	R-L	В	R-1
	B1	20.4	50.3	25.2	51.6	21.8	46.4	19.5	40.6	22.5	44.6	17.8	44.1
• Baseline	B2	20.8	49.6	28.4	48.6	19.0	45.0	22.3	56.4	26.2	52.3	21.0	52.8
• basetine	B3	23.6	54.8	32.0	58.3	25.4	48.7	30.4	62.6	42.7	65.4	28.1	60.5
	B4	27.5	60.6	36.9	54.5	27.2	53.2	35.8	68.1	45.7	70.2	35.6	65.7
	M1	24.6	50.3	30.7	45.8	25.4	51.7	29.7	58.5	37.5	59.6	28.0	60.5
	M2	27.2	56.4	34.4	50.6	26.1	53.6	33.4	63.4	41.8	63.4	34.8	65.8
		$\bar{26.2}$	$\bar{57.1}$	$\bar{3}\bar{3}.\bar{0}$	$\bar{5}\bar{3}.\bar{5}$	-27.8	⁻ 5 5 . 9 ⁻	$-3\bar{2}.\bar{0}$	$^{-}6\overline{5}.\overline{7}$	-40.0	66.4	34.0	64.3
	M4(RANK)	30.1	61.8	38.9	59.8	30.2	62.5	37.3	70.4	47.2	72.4	37.4	71.2
• Transformer-based	M4(CL)	30.5	62.4	39.4	60.4	30.6	62.7	37.5	70.5	47.6	72.5	37.5	71.5
• Transjormer-vasea	ONLYSYN	27.7	58.9	34.9	54.7	28.0	56.2	33.7	66.4	42.0	67.1	35.0	65.8
	-SALN	28.0	59.6	35.8	56.0	28.6	57.3	34.6	67.6	43.2	68.9	35.8	67.4
	-SYREC	29.7	60.2	37.8	58.3	29.7	61.0	36.1	68.9	45.0	71.4	36.5	69.3
	M3+BART	33.8	65.7	41.8	62.8	32.7	64.0	41.5	73.3	49.4	74.2	42.0	71.5
	M4+BART	36.7	66.2	43.6	64.0	34.8	64.6	43.0	74.8	52.8	76.8	43.5	72.8

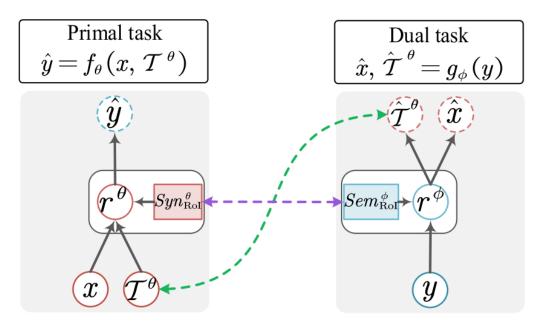
Table Table 2. Results on paraphrase generation (SRC \rightarrow TGT), SRC \leftarrow TGT). B: BLEU, R-X: ROUGE-X.

5) Comparing M4(CL) vs. M4(RANK):

✓ the contrastive learning can bring better effectiveness than the ranking loss method

> Syntactic-Semantic Structure Matching for text ↔ non-text Dual Learning

• Unsymmetrically syntactic structure matching for dual learning



← - - → Syntactic-Semantic Rol Aligning

← - - → Structural Unilateral-Reconstruction

$$\mathcal{L}(\theta,\phi) = \mathcal{L}_C + \lambda_1 \mathcal{L}_D + \lambda_2 \mathcal{L}_M + \lambda_3 \mathcal{L}_R$$

• Task learning of two coupled tasks

$$\mathcal{L}_{\theta} = \mathbb{E}_{x,y} \log p(y|x;\theta),$$

$$\mathcal{L}_{\phi} = \mathbb{E}_{x,y} \log p(x|y;\phi).$$

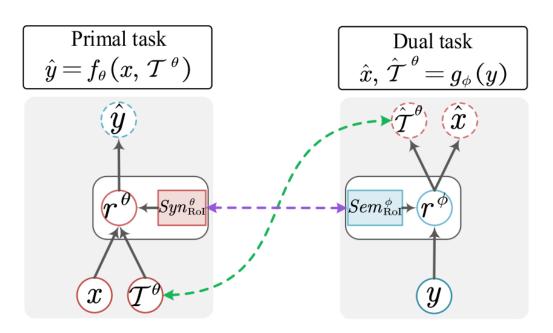
$$\mathcal{L}_{C} = \mathcal{L}_{\theta} + \mathcal{L}_{\phi}.$$

Dual learning backbone

$$\mathcal{L}_D = ||\log \hat{p}(x) + \log p(y|x;\theta) - \log \hat{p}(y) - \log p(x|y;\phi)||,$$

> Syntactic-Semantic Structure Matching for text ↔ non-text Dual Learning

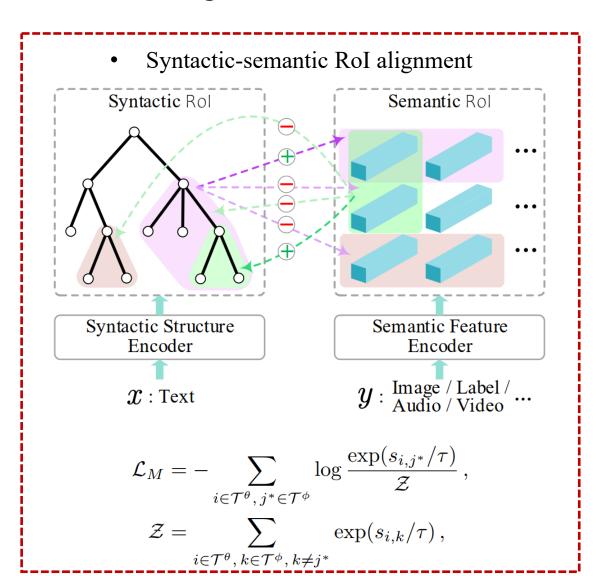
• Unsymmetrically syntactic structure matching for dual learning



← - - → Syntactic-Semantic Rol Aligning

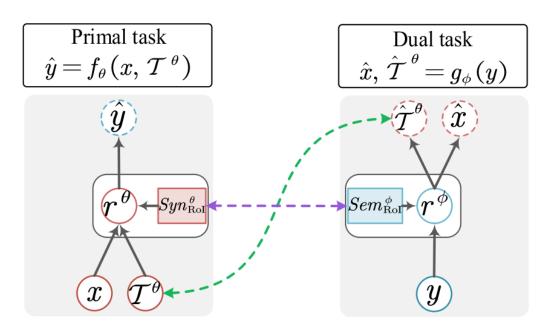
← - - → Structural Unilateral-Reconstruction

$$\mathcal{L}(\theta,\phi) = \mathcal{L}_C + \lambda_1 \mathcal{L}_D + \lambda_2 \mathcal{L}_M + \lambda_3 \mathcal{L}_R$$



> Syntactic-Semantic Structure Matching for text ↔ non-text Dual Learning

• Unsymmetrically syntactic structure matching for dual learning

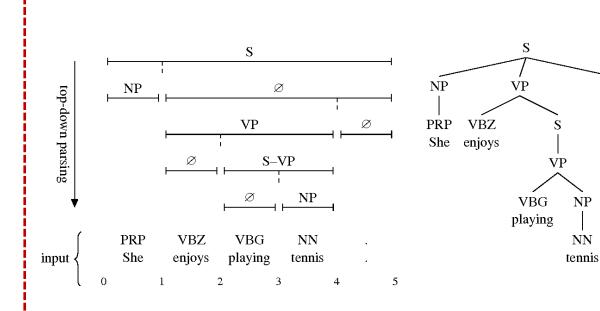


← - - → Syntactic-Semantic Rol Aligning

← - - → Structural Unilateral-Reconstruction

$$\mathcal{L}(\theta, \phi) = \mathcal{L}_C + \lambda_1 \mathcal{L}_D + \lambda_2 \mathcal{L}_M + \lambda_3 \mathcal{L}_R$$

• Structural Cross-Reconstruction



$$\mathcal{L}_R = \mathcal{L}_R^{\theta} + \mathcal{L}_R^{\phi}.$$

> Exp-II: Text↔Non-Text Applications

	MsCoCo					Flickr30k				
	IS↑	$\text{FID}{\downarrow}$	B-4	MTR	IS↑	FID↓	B-4	MTR		
M1	25.6	28.3	32.5	22.8	6.8	36.8	17.6	15.5		
M2	27.8	25.5	/	/	7.5	35.0	/	/		
$\overline{M}3$	$\bar{28.4}$	$\bar{2}\bar{4}.\bar{8}$	36.1	25.1	$\bar{7}.\bar{3}$	$\bar{3}\bar{4}.\bar{2}$	20.1	17.2		
M4	30.7	20.6	40.0	29.6	8.0	30.9	22.6	19.5		
-SALN	29.0	21.5	37.3	28.3	7.4	33.0	21.3	17.9		
-SYREC	29.8	21.3	39.2	29.0	7.7	31.8	21.9	18.6		

Table 3. Results on text⇔image experiment (TXT→IMG: text-to-image synthesis, TXT←IMG: image captioning). B-4: BLEU-4, MTR: METEOR.

	Yelp2014				IMDB				
	ACC	B-4	MTR	ACC	ACC	B-4	MTR	ACC	
M1	60.6	17.8	33.0	53.8	50.6	17.6	36.9	43.6	
M2	61.8	/	/	/	51.9	/	/	/	
$\overline{M}3$	62.0	<u> 19.4</u>	36.4	56.6	$\bar{53.8}$	18.3	41.4	47.3	
M4	63.8	21.8	40.8	62.4	55.6	20.2	47.1	50.9	
-SALN	63.2	19.9	37.0	57.2	54.2	18.9	44.6	48.4	
-SYREC	62.9	20.4	38.5	61.8	55.0	19.5	46.0	49.3	

Table 4. Results on Text \leftrightarrow Label experiment (TXT \rightarrow LB: text classification, TXT \leftarrow LB: conditioned text generation).

[✓] Similar trends with that in the Exp-I: the success of our proposed method can be inherited to the dual learning scenarios more than purely texts.

ICML International Conference On Machine Learning

> Four pivotal questions

Questions

- ★ First, how does structure matching strategy improve the dual learning?
- ★ Second, for the text generation what are improved when aligning the structures?
- ★ Third, can the success of the structure alignment be extented to fully non-text scenarios?
- ★ Fourth, what are the key factors to the structure matching for dual learning?

> Evaluating correctness of unsupervised structure matching

	WMT14	(EN-DE)	WMT14	(EN-FR)	
	$EN \rightarrow DE$	EN←DE	EN→FR	EN←FR	
+ Auto RoI + Gold RoI	29.03 29.51	31.96 32.23	41.82 42.03	36.76 36.98	
Δ	-0.48 -0.27 ParaNMT		-0.31 -0.22 QUORA		
	Para	aNMT	QUO	ORA	
		aNMT SRC←TGT			

Table 5. Results (BLEU) of dual learning with automatically learned and gold RoI matching respectively.

✓ Structure matching helps correctly retrieve and emphasize the key RoIs that are crucial to the task improvements.

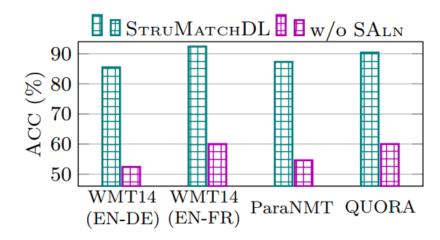


Figure 6. Measuring text↔text RoI alignment.

	ACC
MAF	61.4
STRUMATCHDL	$\textbf{54.3} \pm \textbf{0.3}$
-SyRec	46.7 ± 0.5
-SALN	28.6 ± 0.8

Table 6. Visual grounding results on Flickr30k test set for verifying text↔image matching. MAF is a supervised visual grounding system (Wang et al., 2020).

> Evaluating correctness of unsupervised structure matching

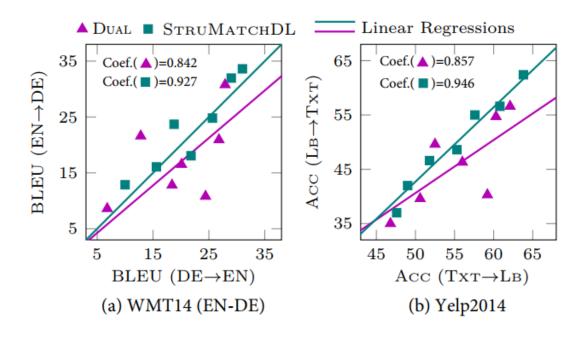


Figure 7. Performance correlation between two coupled tasks. 'Coef.' indicates Pearson correlation coefficient.

✓ Our method strengthens the duality between two dual tasks by correctly aligning the RoIs.

> Evaluating Generated Text

	Pá	araNM	T	MsCoCo			
	Gram.	Corr.	Cont.	Gram.	Corr.	Cont.	
HUMAN	4.86	4.92	3.78	4.82	4.15	4.37	
BASELINE	1.58	$\bar{2}.\bar{20}^{-}$	1.04	$\bar{0}.\bar{78}^{-}$	1.23	0.98	
DUAL	2.24	2.55	1.46	1.80	2.38	1.25	
STRUMATCHDL	3.78 *	3.67 *	2.51	3.46 *	3.27 *	2.74	
-SYREC	2.89	3.21	2.90*	2.75	2.89	2.96*	

Table 7. Human evaluation results. Grammaticality (Gram.), correctness (Corr.), and content richness (Cont.) are rated on Likert 5-scale. * indicates significantly better over the variant (p<0.03).

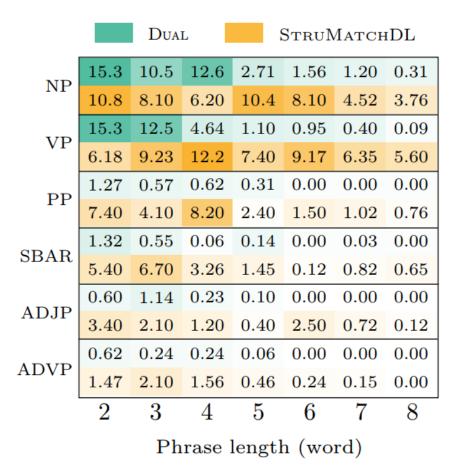


Figure 8. Distribution (frequency, %) over different constituency length of phrases in the generated sentences.

✓ Our method strengthens the duality between two dual tasks by correctly aligning the RoIs.

> Exploring Extendibility

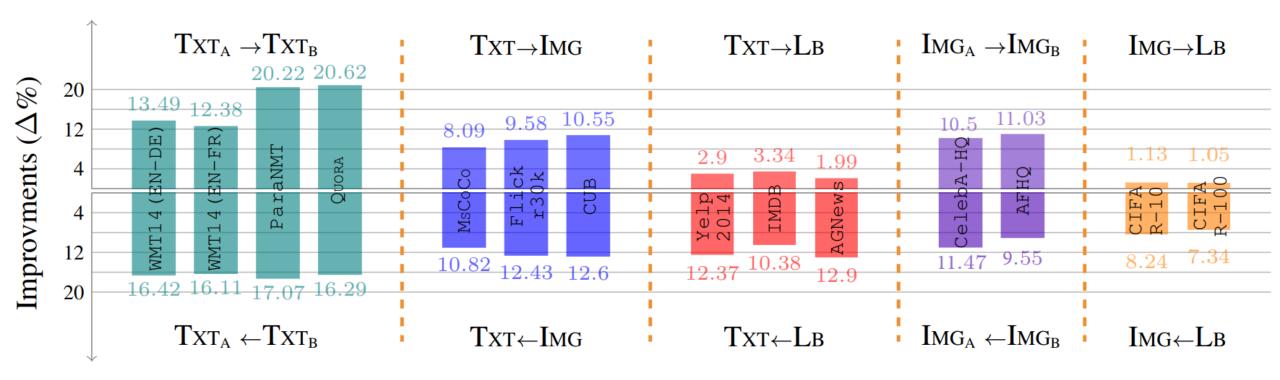
	CIF	'AR-10	CIFAR-100			
	$I_{MG\to L_B}$	Img←I	ĹB	$I_{MG\to L_B}$	Img	–Lв
	ACC	IS↑ F	ID↓	ACC	IS↑	FID↓
M1	93.05	8.62 13		72.60		19.63
$\overline{M3}$	93.68	9.83 9	0.80^{-}	73.85	13.64	15.72
M4	94.74	10.64 7	.38	74.63	14.65	13.42
Δ	+1.06	+0.81 -2	2.42	+0.78	+1.01	-2.30

Table 10. Image ↔ Label experiment (IMG→LB: image classification, IMG←LB: conditioned image generation) on CIFAR-10 and CIFAR-100 datasets.

	Celek	oA-HQ	AFHQ			
	$IMG_A\to IMG_B$	$I\text{MG}_A \leftarrow I\text{MG}_B$	$IMG_A\to IMG_B$	$IMG_A \leftarrow IMG_B$		
M1	26.7	32.7	32.4	40.8		
$\overline{M}3$		-24.6	$ \overline{2}6.2$ $-$	<u> </u>		
M4	17.5	20.3	22.0	25.7		
Δ	-2.5	-4.3	-4.2	-3.9		

Table 11. Image \leftrightarrow Image experiment (image-image translation) on CelebA-HQ and AFHQ datasets. Metrics: FID \downarrow .

> Insights into Key Influencers



[✓] The dual tasks with richer structural information for the alignments will lead to better improvements.

