Robust Models Are More Interpretable Because Attributions Look Normal

Zifan Wang, Matt Fredrikson, Anupam Datta Carnegie Mellon University

zifan@cmu.edu

Explanations and Robustness

Gradient-based Explanations (Saliency Maps; Feature Attribution)

Adversarial Robustness

Robust Models Have Better Explanations

Tsipras et al. 2019 Etmann et al. 2019

Goal

Main Question Why robust models have more interpretable explanations?

Main Methods Geometry-based Analysis Decision Boundary

Contribution 1

In robust models, explanations better align with normal vectors of decision boundaries

→ Explanation vector

Normal vector of decision boundary

How a model separates classes

CIFAR-10	standard	robust ¹
ℓ_2 dist	59.96	1.23
cos dist	0.44	0.05

ImageNet	standard	robust ¹
ℓ_2 dist	8.48	0.41
cos dist	0.28	0.13

Contribution 2

The better alignment can be proved for some robust one-layer network.

Corollary 3.4 (Informal)

In robust¹ models, explanations (Expl) are very close to normal vectors (n) of the decision boundaries

$$||Expl - n|| \le \lambda$$

And $1/\lambda$ is proportional to the robustness.

Motivating Better Explanation Methods

We study explanations form its geometric property and relate it with adversarial robustness.

Contribution 1 & 2

In robust models, explanations align better with normal vectors of the decision boundary.

Searching for normal vectors of decision boundaries as explanations

Contribution 3

Incorporating boundaries to explain model's decision, we introduce **B**oundary-based Integrated **G**radient (BIG).

Thank You

Paper

Colab Demo

Github

<u>Link</u> | QR Code

<u>Link</u> | QR Code

Link | QR Code

