Massively Parallel k-Means Clustering for Perturbation Resilient Instances

Vincent Cohen-addad Vahab Mirrokni *Peilin Zhong*Google Research

Euclidean k-Means Clustering

- Unsupervised learning
 - Partition points into k groups
 - Similar points are in the same group

- Euclidean k-means clustering
 - o Input: n points $p_1, p_2, ..., p_n \in \mathbb{R}^d$
 - $\qquad \text{Goal: find centers } \mathbf{c_1}, \, \mathbf{c_2}, \, ..., \, \mathbf{c_k} \in \mathbf{R^d} \text{ s.t. the clustering cost } \boldsymbol{\Sigma_{i \in [n]}} \text{min}_{j \in [k]} || \, \mathbf{p_i} \mathbf{c_j} \, ||_2^{\ 2} \text{ is minimized}$

Scalable parallel/distributed algorithms are desired to handle massive data

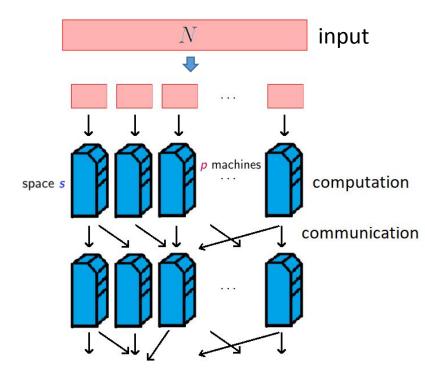
Massively Parallel Computation (MPC)

MPC model

- An abstraction of MapReduce
- Sublinear local memory
- Computation proceeds in rounds
- Bounded communication

Efficiency Measure

- Number of rounds (parallel time)
- Total space
- Local memory



MPC k-Means Clustering

- Input: n-point set P in R^d distributed on several machines
- Output: k center points distributed on several machines

Previous results

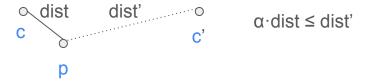
- Small # of rounds & local space but large $\Omega(\log n)$ approximation
- \circ Small approximation factor & # of rounds but large $\Omega(k)$ local space
- \circ Small approximation factor & local space but large $\Omega(\log n)$ number of rounds
- \circ O(1) approximation, o(log n) rounds, o(k) local space is impossible under certain conditions

Our result

- Consider natural well-structured point set
- \circ O(1) rounds, n^{δ} local space for any constant δ >0, 1+ ϵ approximation, near linear total space
- o If local space is $\Omega(k)$, the **exact** optimal k-means solution is obtained

Perturbation Resilient Instances

- α -Perturbation resilience $\rightarrow \alpha$ -center proximity
 - Let C be the optimal solution
 - If p is in a cluster with center $c \in C$, then $\alpha \cdot ||p c||_2 \le ||p c'||_2$ for any other center $c' \in C$



Our Techniques

- Candidate clusters via locality sensitive hashing (LSH)
 - LSH → near neighbor graph for different scales
 - Optimal cluster → connected component
 - Candidate clusters → Hierarchical tree structure

- O(1)-round dynamic programming over small depth tree
 - A novel task scheduling process via subtree generation

Poster: Hall E #1106

