

A NEURAL TANGENT KERNEL PERSPECTIVE OF GANS

ICML 2022 – July 21st, 2022 – Poster Session 3, #211

*J.-Y. Franceschi,^{1,2} E. de Bézenac,^{3,2} I. Ayed,^{2,4}
M. Chen,⁵ S. Lamprier,² P. Gallinari^{2,1}*

¹Criteo AI Lab, Paris, France

²Sorbonne Université, CNRS, ISIR, F-75005 Paris, France

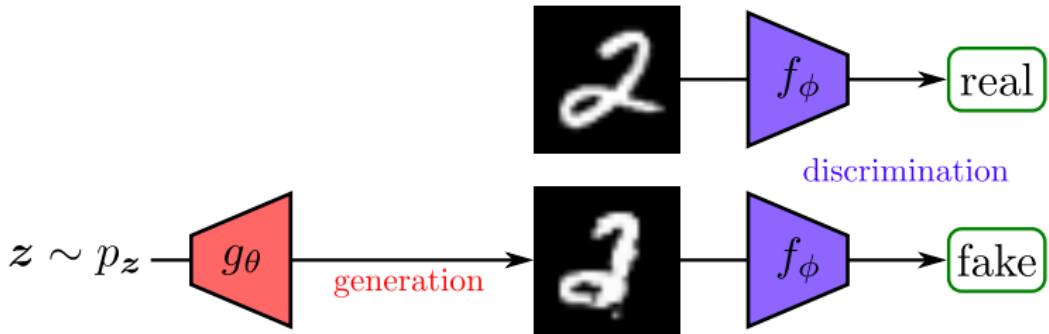
³Seminar for Applied Mathematics, D-MATH, ETH Zürich, Zürich-8092, Switzerland

⁴ThereSIS Lab, Thales, Palaiseau, France ⁵Valeo.ai, Paris, France

We solve fundamental flaws of
GAN analyses via a theoretical
framework based on NTKs.

Principle

- ▶ The generator g_θ generates a distribution α_θ , with target β .
- ▶ g_θ is trained in competition with a discriminator f_ϕ .
- ▶ g_θ and f_ϕ have conflicting objectives:
 - ▶ f aims at distinguishing between fake and target samples;
 - ▶ g should make fake and target samples indistinguishable for f .



- This is typically framed as, for some loss \mathcal{L} :

$$\inf_{\theta} \sup_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}).$$

- This is typically framed as, for some loss \mathcal{L} :

$$\inf_{\theta} \sup_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}).$$

- Many analyses solve the inner optimization problem and find that for some loss \mathcal{C} and optimal $f_{\phi_{\theta}^*}$:

$$\inf_{\theta} \sup_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}) = \inf_{\theta} \mathcal{L}\left(g_{\theta}, f_{\phi_{\theta}^*}\right) \approx \inf_{\theta} \mathcal{C}(\alpha_{\theta}, \beta).$$

- In vanilla GAN, \mathcal{C} is a Jensen-Shannon (JS) divergence.
- In WGAN, \mathcal{C} is the earth mover's distance \mathcal{W}_1 .

- This is typically framed as, for some loss \mathcal{L} :

$$\inf_{\theta} \sup_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}).$$

- Many analyses solve the inner optimization problem and find that for some loss \mathcal{C} and optimal $f_{\phi_{\theta}^*}$:

$$\inf_{\theta} \sup_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}) = \inf_{\theta} \mathcal{L}(g_{\theta}, f_{\phi_{\theta}^*}) \approx \inf_{\theta} \mathcal{C}(\alpha_{\theta}, \beta).$$

- In vanilla GAN, \mathcal{C} is a Jensen-Shannon (JS) divergence.
- In WGAN, \mathcal{C} is the earth mover's distance \mathcal{W}_1 .
- Gradient received by g_{θ} :

$$\nabla_{\theta} \mathcal{L}(g_{\theta}, f_{\phi_{\theta}^*}).$$

- ▶ In practice, GANs are iteratively optimized as follows:

$$\begin{aligned}\theta &\leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(g_{\theta}, f_{\phi}); \\ \phi &\leftarrow \phi + \lambda \nabla_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}).\end{aligned}$$

- ▶ f_{ϕ} and g_{θ} are considered to be independent of each other.

- In practice, GANs are iteratively optimized as follows:

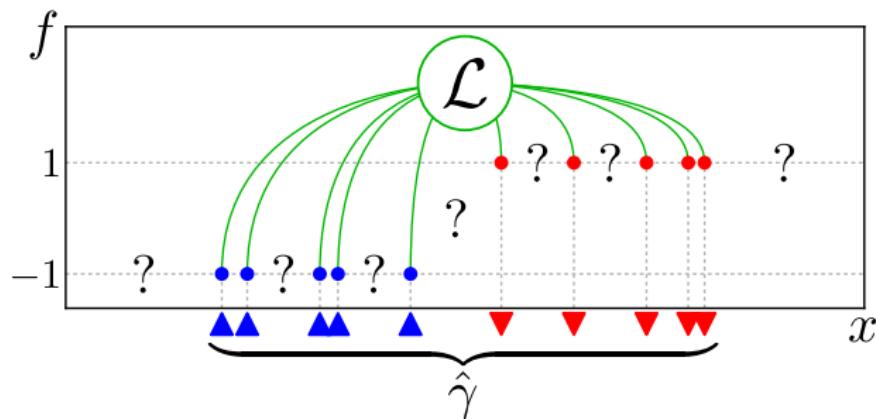
$$\begin{aligned}\theta &\leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(g_{\theta}, f_{\phi}); \\ \phi &\leftarrow \phi + \lambda \nabla_{\phi} \mathcal{L}(g_{\theta}, f_{\phi}).\end{aligned}$$

- f_{ϕ} and g_{θ} are considered to be independent of each other.
- Gradient received by g_{θ} :

$$\cancel{\nabla_{\theta} \mathcal{L}(g_{\theta}, f_{\phi_{\theta}^*})} \quad \Rightarrow \quad \nabla_{\theta} \mathcal{L}(g_{\theta}, f_{\phi}).$$

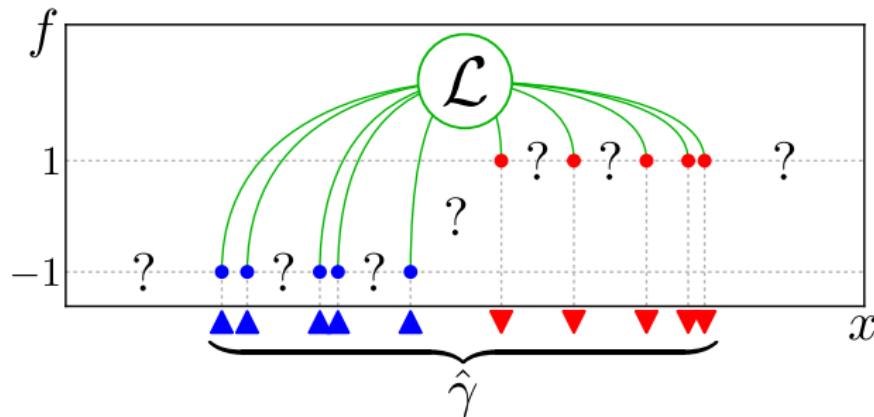
Consequence

Altering the gradient changes the loss \mathcal{L} minimized by the generator.



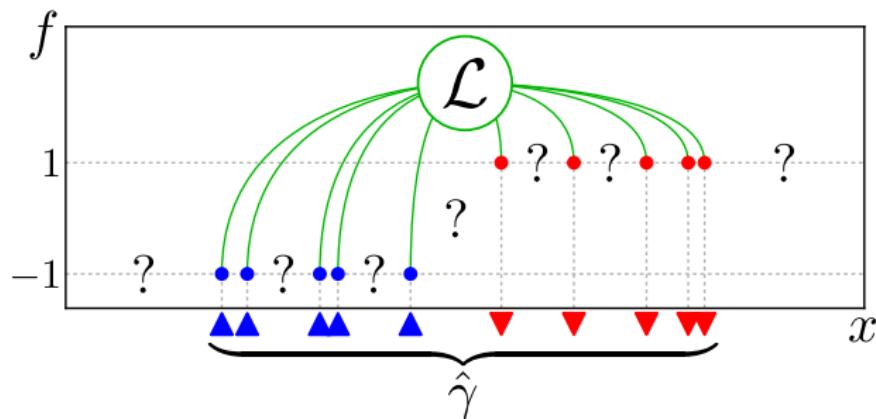
In an Alternating Optimization setting:

- ▶ Computing gradient of generator requires ∇f (chain rule).



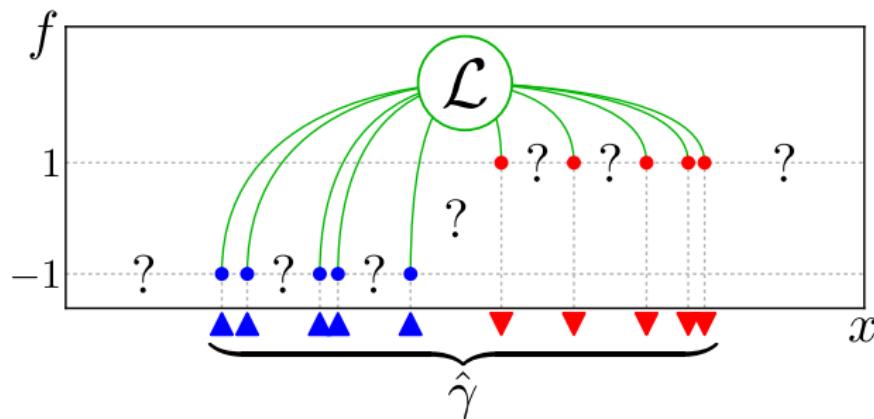
In an Alternating Optimization setting:

- ▶ Computing gradient of generator requires ∇f (chain rule).
- ▶ Without any assumption on the structure of f , as loss \mathcal{L} is only defined on training points, ∇f is not defined.



In an Alternating Optimization setting:

- ▶ Computing gradient of generator requires ∇f (chain rule).
- ▶ Without any assumption on the structure of f , as loss \mathcal{L} is only defined on training points, ∇f is not defined.
- ▶ The gradient of the generator is thus also ill-defined.



In an Alternating Optimization setting:

- ▶ Computing gradient of generator requires ∇f (chain rule).
- ▶ Without any assumption on the structure of f , as loss \mathcal{L} is only defined on training points, ∇f is not defined.
- ▶ The gradient of the generator is thus also ill-defined.
- ▶ *Need to take into account structure of f .*

Problem

Most prior analyses fail to model practical GAN settings, leading to:

- ▶ be unable to determine the true loss \mathcal{C} ;
- ▶ ill-defined gradient issues.

Our Work

We propose a *finer-grained* framework solving these issues, modeling the discriminator's architecture along with alternating optimization.

Infinite-Width NTK Framework

- ▶ We consider the NNs in the NTK regime (Jacot et al., 2018).
- ▶ Allows theoretical analysis of evolution of NNs during training.

Infinite-Width NTK Framework

- ▶ We consider the NNs in the NTK regime (Jacot et al., 2018).
- ▶ Allows theoretical analysis of evolution of NNs during training.

Theorem (Smoothness of the discriminator, Informal)

The discriminator trained with gradient descent is infinitely differentiable (almost) everywhere.

- ▶ Gradients of both the discriminator and generator well defined.

We analyze evolution of generated distribution α_θ during training:

- ▶ Follows *Stein gradient flow* w.r.t. loss \mathcal{C} (Duncan et al., 2019);
- ▶ \mathcal{C} is automatically non-increasing during adversarial training;
- ▶ \mathcal{C} can be analyzed theoretically; in particular:

We analyze evolution of generated distribution α_θ during training:

- ▶ Follows *Stein gradient flow* w.r.t. loss \mathcal{C} (Duncan et al., 2019);
- ▶ \mathcal{C} is automatically non-increasing during adversarial training;
- ▶ \mathcal{C} can be analyzed theoretically; in particular:

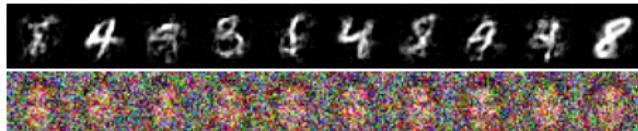
GAN Loss for IPMs

For the IPM loss, \mathcal{C} is the squared MMD with the NTK as kernel:

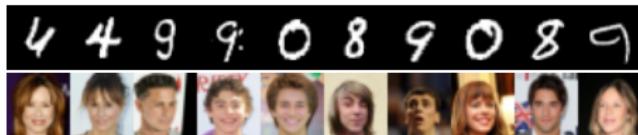
$$\mathcal{C}(\alpha_\theta, \beta) = \text{MMD}_k^2(\alpha_\theta, \beta).$$

- ▶ More results of this type in the paper!

RBF



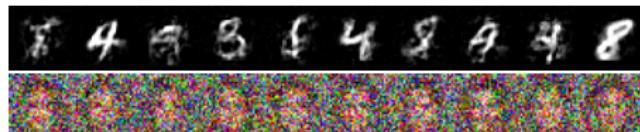
ReLU



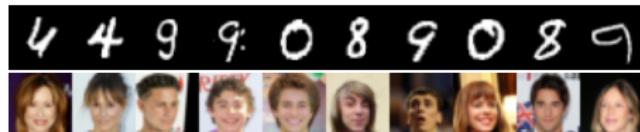
ReLU (no bias)

- ▶ We conduct an empirical analysis,
- ▶ Yields insights into GAN training.

RBF



ReLU



ReLU (no bias)

- ▶ We conduct an empirical analysis,
- ▶ Yields insights into GAN training.

Experimental Framework

Code: <https://github.com/emited/gantk2>.

See you in poster session 3!

Thank you for your attention!

Poster #211