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Self-Supervised Learning on Graphs % Engineering

« SSL of GNNs is emerging as a promising way of leveraging
unlabeled data.

- SSL taxonomies: contrastive v.s. predictive.

- Contrastive methods: current SOTA are mostly contrastive,
depend on large sample size, hard to handle large-scale graphs.

- Predictive methods: memory-efficient, not enough theoretical
guidance or justifications.
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- We consider the concept latent data, where any observed graph
G = (A, X) is generated from a corresponding latent data that
determine its semantic.

- WLOG, we specifically consider latent data G, = (A, F) in
graph-structure with the same connectivity and satisfying two
assumptions (non-structural and unbiased noise).

- Theorems can be generalized with other distances when
considering latent data in different forms.
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Latent Graph Prediction » Engineering

- We adopt the prediction/reconstruction of the latent graph to
derive our predictive SSL task.

f* = argmin || f(A4, X) — F|’

- We derive a self-supervised upper bound for the above objective
to eliminate the need of unknown F

Eax,r||f(AX)-F|*+|X - Fllzl <Eax|f(4,X)-X|"+
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LaGraph Objectives

Node-level representation learning

Corollary 2.2. Let G = (A, X) be a given graph, Gz =
(A, F) be its latent graph, € and D be a graph encoder and
a prediction head (decoder) consisting of fully-connected
layers. If the prediction head D is {-Lipschitz continuous
with respect to ly-norm, we further have the following in-
equality,

E[||D(H) - F|* + ||X - F|*] <E||DH) - X|?

E|H, - H)|?]"
+20|VILE; T ] ;

|71

3

where H = £(A, X) and H' = £(A, X jc) denote the
node embedding of the given graph and the masked graph,

respectively, and H j := H |J, ] selects rows with indices
in J.
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Graph-level representation learning

Corollary 2.3. Let G = (A, X) be a given graph, G1 =
(A, F) be its hidden latent graph, £ be a graph encoder, R
be a readout function satisfying k-Bilipschitz continuity with
respect to lo-norm, and D be a prediction head (decoder). If
the prediction head D is ¢-Lipschitz continuous with respect
to lo-norm, we have the following inequality,

E[|D(H) - F|* +[|X - F||I*] <E||D(H) - X’
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where z = R(H) and 2’ = R(H') denote the graph-level
representations of the given graph and the masked graph,
respectively.
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The LaGraph Framework

Input graphs
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Please refer to Section 3 in our paper for further discussions and theoretically analysis on the
relationship and differences between LaGraph and other theoretically sound methods, including
Denoising Autoencoders, the Bottleneck Principle, contrastive methods, and BGRL ...
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Transductive =~ Am.Comp. Am.Pht. Co.CS Co.Phy Inductive PPI Flickr Reddit
Raw features ~ 73.840.0  78.5+0.0 90.4+0.0 93.6+0.0 Raw feat.  42.5+0.3 20.3+0.2 58.5+0.1
DeepWalk 85.7+0.1 89.4+0.1 84.6+0.2 91.8+0.2 GAE 75.7£0.0  50.7+0.2 OOM

GAE 87.7£0.3  92.7x03 92.4+0.2 95.3%0.1 VGAE 75.8+40.0 50.4+0.2 OOM
VGAE 88.1+0.3  92.8+40.3 92.5+0.2 95.3%0.1 Super-GCN  51.5+0.6 48.7+0.3 93.3+0.1
Supervised 86.5+0.5  92.4+0.2 93.0+0.3 95.7+0.2 Super-GAT  97.3+0.2 OOM OOM
DGI 84.0£0.5  91.6x0.2 92.2+0.6 94.5+0.5 GraphSAGE 46.5+0.7 36.5+1.0 90.8+1.1
GMI 82.240.3  90.7+0.2 OOM OOM DGI 63.840.2 42.9+0.1 94.0+0.1
MVGRL 87.5+0.1 91.7+0.1 92.1+0.1 95.3+x0.0 GMI 65.0£0.0 44.5+0.2 95.0+0.0
GRACE 87.540.2  92.2+0.2 92.9+0.0 95.3+0.0 SUBG-CON 66.9+0.2 48.8+0.1 95.2+0.0
GCA 88.9+0.2  92.5+0.2 93.1+0.0 95.7+0.0 BGRL-GCN 69.6+0.2 50.0+0.3* OOM*
BGRL 89.7+0.3  92.9+0.3 93.2+0.2 95.6+0.1 BGRL-GAT 70.5+0.1 44.2+0.1* OOM*
LaGraph 88.0£0.3  93.5+04 93.3+0.2 95.8+0.1 LaGraph  74.6x£0.0 51.3+0.1 95.2+0.0

Top: Performance on

. . . # nodes sampled 100 1,000 2,500 5,000 10,000 all
transductive and inductive % nodes sampled 022%  224%  5.60%  11.20%  2241%  100.00%
node-level datasets. Fl-score - LaGraph 6.07 51.12 51.12 51.27 51.29 51.26

Flickk Memory - LaGraph ~ 1389MB  1465MB  1553MB  1725MB  2065MB  4211MB
Right: Model robustness when F1-score - GraphCL 45.27 45.27 45.27 45.38 45.45 45.48

: Memory - GraphCL ~ 1647MB  2599MB  4137MB  6741MB  11905MB  47939MB
trained on subset of nodes.
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NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

GL - - - 81.7+£2.1 - 77.3£0.2  41.0£0.2  65.9+1.0
WL 80.0+0.5 72.9+0.6 - 80.7+3.0 - 68.8+0.4  46.1+0.2  72.3+34
DGK 80.3+0.5 73.3+0.8 87.4+£2.7 78.0£0.4  41.3+0.2  67.0+0.6

Node2Vec  54.9+1.6 57.54£3.6 75.1+0.5 72.6x10.2  55.7%0.2  73.840.5  34.1x04  50.0+0.8
Sub2Vec  52.8+1.5 53.0+5.6 73.6£1.5 61.1£15.8 62.1x14 71.5+04  36.7+04  55.3%1.5
Graph2Vec  73.2+1.8 73.3%2.1 76.2+0.1  83.2+9.3 59.9+0.0 75.8+1.0 47.9+03  71.1+0.5
GAE 73.3+0.6 74.1+0.5 77.9+0.5 84.0+0.6  56.3x0.1 74.8+40.2  37.6x1.6  52.1+0.2
VGAE 73.7+0.3 74.0+0.5 77.6£04  84.4+0.6  56.3+0.0 74.8+0.2  39.1x1.6  52.1+0.2
InfoGraph  76.2+1.1 74.4+0.3 72.9¢1.8  89.0+1.1 70.7x1.1  82.5+1.4  53.5x1.0  73.0+0.9
GraphCL  77.9+0.4 74.4+0.5 78.6:0.4  86.8+1.3 71.441.2  89.5+0.8  56.0+0.3  71.1x0.4
MVGRL  75.1+0.5 71.5+0.3 OOM 89.7+1.1 OOM 84.5+0.6 OOM 74.2+0.7
LaGraph  79.9+0.5 75.2+0.4 78.1+04  90.2+x1.1  77.6x0.2 90.4+0.8 56.4+0.4  73.7+0.9

RDT-B COLLAB
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Top: Performance on graph-level
classification tasks, scores are averaged
over 5 run.
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Right: Model robustness to small batch
sizes on RDT-B and COLLAB.
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Thank youl!

Code available under the DIG library: https://github.com/divelab/DIG/

Email: ethanycx@tamu.edu



