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Why this work ?



Tabular data:
important but scarce generative

% of total value potential

Modern generative techniques = Neural

Structured 55-94 .
Networks (NN) / Deep Learning (DL) based
ime seres e - On supervised learning side, the best techniques
atatype mage 242 are (still) not DL-based but tree-based ;
Video 17-30 competing requires sophisticated+ DL techs
Text 16-26 - “Lack of novelty” in state of the art (SOTA)
Audio 713 modern generative approaches for tabular data
Range « Unconvincing results for DL + tabular pipelines

SOURCE: McKinsey Global Institute analysis

Camino et al., ICBINB@NeurlPS"20

Google Research
Chui et al., Notes from the Al frontier, McKinsey, 2018
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Tabular data,
Supervised

Losses: proper

Savage, JASA'71
Models: tree-based

Breiman et al. '84
Algorithms: boosting

Kearns & Mansour, STOC'96

Google Research
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Tabular data,
Supervised

Losses: proper

This paper, generative,
tabular data

Background: GAN game

» Losses: designed from discriminator & in

Savage, JASA'71
Models: tree-based

the proper framework
» Models: tree-based

Breiman et al. ‘84
Algorithms: boosting

» Algorithms: boosting

Kearns & Mansour, STOC'96

L adversarial
b copycat

Google Research
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Loss functions

Google Research



GAN framework in a é_:

Measure-based loss, crafted from generator

[+(P,N) = /f (3—11:\;) dN f-divergence

“Information of Binary Task”

Google Research
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GAN framework in a =

S
=

Measure-based loss, crafted from generator

[+(P,N) = /f (g—;) dN f-divergence

“Information of Binary Task”
L variational formulation

H +
I;(P,N) > sup — Ex[f* o h(X)]}
t h

Not an equality in general

Google Research
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GAN framework ina &,

Measure-based loss, crafted from generator

[+(P,N) = /f (g;) dN f-divergence
“Information of Binary Task”
L variational formulation
La B .
I;(P,N) > sup — Ex[f* o h(X)]}
t h

Not an equality in general

L discriminator hidden in ﬁ seeks to increase
the IBT by discriminating VS (W H+G)

Google Research
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GAN framework ina &,

Measure-based loss, crafted from generator

[+(P,N) = /f (j—;) dN f-divergence

“Information of Binary Task”
L variational formulation

H +
I;(P,N) > sup — Ex[f* o h(X)]}
t h
Not an equality in general
D discriminator hidden in B seeks to increase
the IBT by discriminating VS (W H+G)
b generator = N, seeks to decrease the IBT by

generating data that looks like (w/ G)

Nowozin et al., NeurlPS'16
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GAN framework ina %, » Our framework
Properness: FIYZ1 PX|Y wIY =—
Y Binary task B = (m, P N)

5 Mixture M=n-P+(1—7)-N

Measure-based loss, crafted from generator

Google Research
Nowozin et al., NeurlPS’16, Reid & Williamson, JMLR'11

Nock & Guillame-Bert — Generative Trees: Adversarial and Copycat



GAN framework ina %, » Our framework

Properness: FPFIYZ1 PX|Y wIY = -

Y Binary task B = (m, P N)

D Mixture M=7n-P+(1—7)-N

L discriminator learns a posterior 1 : X — [O, 1]

tory = 11
b “Ideal” posterior computes P[Y = 1|X]

Measure-based loss, crafted from generator

n=mx- I Bayes posterior

Google Research
Nowozin et al., NeurlPS’16, Reid & Williamson, JMLR'11
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GAN framework ina &, > Our framework

Measure-based loss, crafted from generator Properness: FIYZ1 PXJY wIY =—

Y Binary task B = (m, P N)

5 Mixture M=n-P+(1—7)-N

b discriminator learns a posterior 1 X — [O, 1]
tory = 11

b “Ideal” posterior computes P[Y = 1|X]

n=mx- I Bayes posterior

b aloss can be decomposed in two partial losses

Uy, u) = [y = 1] -[a(u [-Fg[y = —1] -}[{—1(u)
A bt esti d posterior in [0,1
l estimate

true label / class in {-1,1}

Google Research
Nowozin et al., NeurlPS’16, Reid & Williamson, JMLR'11
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GAN framework ina &

Measure-based loss, crafted from generator

Nowozin et al., NeurlPS’16, Reid & Williamson, JMLR'11

+ Qur framework

Properness: PIYZ1 PIX[Y wIY =-
Y Binary task B = (7, P N)
5 Mixture M=n-P+(1—7)-N
L discriminator learns a posterior 1 : X — [O, 1]
Yy = 1]
= 1[X]
n=mx- M Bayes posterior
b aloss can be decomposed in two partial losses
Uy, u) =y =1] -Ja(u)+ [y = 1] -[f_1(w)
‘l t ___ estimated posterior in [0,1]

true label / class in {-1,1}
L a loss is symmetric iff £1(u) = ¢

L “Ideal” posterior computes P[Y

_1(1 — U)

Google Research
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GAN framework ina &

Measure-based loss, crafted from generator

Nowozin et al., NeurlPS’16, Reid & Williamson, JMLR'11

» Qur framework

Properness: PIYZ1 PIX[Y wIY =-

Y Binary task B = (m, P N)

5 Mixture M=n-P+(1—7)-N

b discriminator learns a posterior 1 X — [O, 1]
Yoy = 11x]

= 1|X]

— Bayes posterior
M yes p

L “Ideal” posterior computes P[Y

*

Nt =

b aloss can be decomposed in two partial losses

f(y, A) = [y = 1] o (u [-Fg[y = —1] -|f=1(u)
L estimated posterior in [0,1
I—'crue label / class in {-1,1}
Ly aloss is symmetric iff ¢1(u) = £—_1(1 — u)

b aloss is strictly proper iff Bayes posterior
solely realises the inf of

L(p) =infEy g, [l(Y,u)] Google Research
|— Bayes risk (concave)




GAN framework ina &

Measure-based loss, crafted from generator

Nowozin et al., NeurlPS’16, Reid & Williamson, JMLR'11

» Qur framework

Properness: PIYZ1 PIX[Y wIY =-

Y Binary task B = (m, P N)

5 Mixture M=n-P+(1—7)-N

b discriminator learns a posterior 1 X — [O, 1]
Yoy = 11x]

= 1|X]

— Bayes posterior
M yes p

L “Ideal” posterior computes P[Y

*

Nt =

b aloss can be decomposed in two partial losses

Uy, u) =y =1] -{a(u [+£[y = —1] -[l_1(u)
4 4 __ estimated posterior in |0,1
I—'crue label / class in {-1,1}

Ly aloss is symmetric iff ¢1(u) = £—_1(1 — u)

b aloss is strictly proper iff Bayes posterior
solely realises the inf of

L(p) 1nfEY B(p )[E(Y u)]
|— Bayes risk (concave)




i

GAN framework ina &, * Our framework

Measure-based loss, crafted from generator Partial losses ¢1, ¢_1, Bayes posterior n* & risk L
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GAN framework ina &,

Measure-based loss, crafted from generator

Nowozin et al., NeurlPS’16, Reid & Williamson, JMLR'11

» QOur framework

Partial losses ¢1, ¢_1, Bayes posterior n* & risk L
b posterior 1 is said calibrated iff satisfies

dPﬁ <
dMj.
b ex: the prior 7T, Bayes posterior M*are calibrated

b any decision tree (w/ empirical posterior
prediction at the leaves) is calibrated

(J-algebra coarsened
to the level sets ofT]

n=m-

Google Research
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GAN framework in a =

=

Measure-based loss, crafted from generator

Nowozin et al., NeurlPS’16, Reid & Williamson, JMLR'11

» QOur framework

Partial losses ¢1, ¢_1, Bayes posterior n* & risk L
b posterior 1 is said calibrated iff satisfies

dPﬁ <

dM;.
b ex: the prior 7T, Bayes posterior M*are calibrated
b any decision tree (w/ empirical posterior

prediction at the leaves) is calibrated
b for any calibrated™), its statistical information is

AL(#, M5) = L(m) — Exm, [L{(X))]

(J-algebra coarsened

n=mx to the level sets ofT]
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GAN framework ina &, > Our framework

Measure-based loss, crafted from generator Partial losses ¢1, ¢_1, Bayes posterior n* & risk L
For any calibrated ), its statistical information:

AL(#, M5) = L(7) — Exm, [L{(X))]

Google Research
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GAN framework ina &, » Our framework

Measure-based loss, crafted from generator Partial losses ¢1, ¢_1, Bayes posterior n* & risk L
For any calibrated ﬁ its statistical information:
dP Y A =
[+(P,N) = /f (d_N) dN  fdivergence AL, Mz) = L(7) — Ex~m, [L(A(X))]

“Information of Binary Task”
L variational formulation

H +
I[f(P,N)?S%P — Ex[f* 0 h(X)]} Ijr (P, Na) =1+ ¢ = AL(f, M5)

Not an equality in general

Theorem: for any calibrated jand any strictly
proper symmetric and differentiable loss 12

Not shown for readability

3 . L . 1
Ly discriminator hidden in h, seeks to increase + If density ratio fct £2,(p) = £ (_p) S U

1+
the IBT by discriminating real vs (W/ H + G) < L(m) — (1) by ( T : )
b generator = N, seeks to decrease the IBT by 14+ (1 —m) - x*(N7[|P5)
generating data that looks like (w/ G) chi square

Google Research
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GAN framework ina &,

Measure-based loss, crafted from generator

[+(P,N) = /f (311:1) dN f-divergence

“Information of Binary Task”
L variational formulation

H +
I;(P,N) > sup — Ex[f* o h(X)]}
t h

Not an equality in general

L discriminator hidden in h, seeks to increase
(W H+G)
b generator = N, seeks to decrease the IBT by
generating data that looks like (w/ G)

the IBT by discriminating VS

Nowozin et al., NeurlPS’16, Reid & Williamson, JMLR'11

» Qur framework

Partial losses ¢1, ¢_1, Bayes posterior n* & risk L
For any calibrated ), its statistical information:

AL(#, M5) = L(7) — Exm, [L{(X))]

Theorem: for any
proper symmetri True for all tested losses;
proof of partial ppty in
I[ff (Ps, N7y general case
|

1 v
—) cvx, then
1+p

1+(1—m)-

+ if density ratio fct £*,(p) = -1 (

SL(W)—(l—W)-£_1<

X2(Nﬁ||Pﬁ))

chi square
Google Research
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GAN framework ina . » Our framework

Measure-based loss, crafted from generator Partial losses ¢1, ¢_1, Bayes posterior n* & risk L

Summary

Nowozin et al-' NeurlPS™16, Reid & WiIIiamson, JMLR11 Nock & Guillame-Bert — Generative Trees: Adversarial and Copycat




I;(P,N) > sup

GAN framework ina &,

Measure-based loss, crafted from generator

[+(P,N) = /f (311:1) dN f-divergence

“Information of Binary Task”
b variational formuid¥ian

H +

s — Ex[f* o A(X)]}
t h

Not an equality in general

L discriminator hidden in }, seeks to increase

)

(W H+G)
se the IBT by

Gets the discriminator’s e real (W/ G)

loss from the generator’s
amson, JMLR'11

» Qur framework

Partial losses ¢1, ¢_1, Bayes posterior n* & risk L
For any calibrated ), its statistical information:

AL(#, M5) = L(7) — Exm, [L{(X))]

Theorem: for any calibrated jand any strictly
proper symmetric and differentiable loss 12

I[f;r(Pﬁ,Nﬁ) — H + — AL(ﬁ,Mﬁ)

Not shown for readability

+ if density ratio fct £, (p) = £-1 (L) cvxighen
1+p
‘ T
: ) - x* (N |[Ps)
H Gets the generator’s loss .
chi square

from the discriminator’s | gle Research

: Adversarial and Copycat




GAN framework ina &,

Measure-based loss, crafted from generator

[+(P,N) = /f (g;) dN f-divergence

“Information of Binary Task”
L variational formulation

H +

1y (P,) 2 sup — Ex[f* o h(X)]}
h

Not an equ: . , in general

L discrimihator hidden in h, seeks to increase

(W H+G)
Loose approximation [se the IBT by
(inequality) via variational e real (W/ G)
formulation
I amson, JMLR'11

» Qur framework

Partial losses ¢1, ¢_1, Bayes posterior n* & risk L
For any calibrated ), its statistical information:

AL(#, M5) = L(7) — Exm, [L{(X))]

Theorem: for any calibrated jand any strictly
proper symmetric and differentiable loss 12

Itr (Ps,N7) = 4 + ¢ = AL(A, My)
hownforread
+ if density ratio fc@e™, (p) = £-1 cvx then
Tight characterlsatlon ) 2(NA|[Ps ))
(all equalities), and one
chi square

loss “to train against them
all”;

e Research

. the chi square

: Adversarial and Copycat




GAN framework ina &,

Measure-based loss, crafted from generator

[+(P,N) = /f (?11131) dN f-divergence

“Information of Binary Task”
L variational formulation

H +
I;(P,N) > sup — Ex[f* o h(X)]}
t h

Not an equality in general

L discriminator hidden in }, seeks to increase

(W H+G)
Nt : se the IBT by
No” assumption e real (i G)
necessary
I amson, JMLR'11

» QOur framework

Partial losses ¢1, ¢_1, Bayes posterior n* & risk L
For any calibrated ), its statistical information:

AL, M5) = L(7) — Ex~m, [L{A(X))]

Theorem: for any calibrated jand any strictly
proper symmetric and differentiable loss 12

I[f;r(Pﬁ,Nﬁ) — H + — AL(ﬁ,Mﬁ)

Not shown for readability

+ if density ratio fct £*,(p) = -1 (

Z

1
—) cvx, then
1+p

7T)7‘rX2(Nﬁ||Pﬁ))

chi square
gle Research

Discriminator calibrated

: Adversarial and Copycat




Models
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Tree

A tree is a binary directed tree whose
internal nodes are labeled with a test
on an observation variable and
outgoing arcs are labeled with truth
values. Leaves are blank. False True

Other debtors in {none}

)

Number existing credits <= 2

False True

(Labelling from UCI German Credit)

Google Research
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Decision Tree (DT)

A decision tree h is a tree in which
leaves are labeled by values in [0,1]

Other debtors in {none}

False True

Number existing credits <= 2 0.1

False True

03 08

(Labelling from UCI German Credit)

Google Research
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Generative Tree (GT)

A Is a tree in which
outgoing arcs are labeled by

B(p). l1—p

\ Other debtors in {none}

False True

Number existing credits <= 2

False True

(Labelling from UCI German Credit)

Google Research
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Key routines

For a decision tree h: for a given observation € X, return the leaf \(z)
whose path in the tree is satisfied by I

For a generative tree G: sample a path (wrt “Bernoullis”) and sample uniformly in the

C%n;espondlng full domain of the leaf A reached Other debtors in {none}
c
2 0.1 False) (0.9, True)

4

Number existing credits <= 2

(0.5, False) 0.5, True)

)\ (Labelling from UCI German Credit)
Google Research

Other debtors

>
Number existing credits
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Key routines

For a decision tree h: for a given observation € X, return the leaf \(z)
whose path in the tree is satisfied by I

For a generative tree G: sample a path (wrt “Bernoullis”) and sample uniformly in the

C%n;espondlng full domain of the leaf A reached Other debtors in {none}
c
2 0.1 False) (0.9, True)

Number existing credits <= 2

Other debtors

>
Number existing credits

E}additional feat.) Nock & Guill

= Generative Trees: Adversarial and Copycat



Additional conveniences of generative trees

L For any observation, local density computable in O(depth(G)) / \
L If missing values, likelihood | observed values & generator G available in O(size(G)) ,.*
b XAl /fairness: “as easy” to interpret as a decision tree

b Easily trainable from data with missing values Other debtors in {none}

(0.1, False ‘mg True)

P

/ Other debtors = guarantor, Number existing credits = 1, ...
‘ Google Research

K4
.« Other debtors = ?, Number existing credits = 3, ...
Nock & Guillame-Bert — Generative Trees: Adversarial and Copycat



Algorithms
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Adversarial

b GAN-style (for “vs” training)
L simple (leaf—feature—split—p in B(p)—repeat)

Boosting compliance in generative framework:
L a weak generative assumption = non total
independence between data generation (G) and
classification (h)

1 most “expensive" computational bit = the
computation of Bernoulli p’s

L geometric convergence of the chi square

1
1+@Q
1
(details in paper)

X* (N5™[|Ps) < X (N3[[Pq)
Google Research
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Adversarial

b GAN-style (for “vs” training)
L simple (leaf—feature—split—p in B(p)—repeat)

Boosting compliance in generative framework:
L a weak generative assumption = non total
independence between data generation (G) and
classification (h)

1 most “expensive" computational bit = the
computation of Bernoulli p’s

L geometric convergence of the chi square

1

2 (NTnew || D .
X (Nﬁ HPn)S 1+ Q

x> (N2||P5)

Copycat

b Powerful boosting DT induction algorithms for
discriminator h. Can we rely on them to train G ?

Google Research
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Adversarial

b GAN-style (for “vs” training)
L simple (leaf—feature—split—p in B(p)—repeat)

Boosting compliance in generative framework:
L a weak generative assumption = non total
independence between data generation (G) and
classification (h)

1 most “expensive" computational bit = the
computation of Bernoulli p’s

L geometric convergence of the chi square

1

2 (NTnew || D .
X (Nﬁ HPn)S 1+Q

x> (N2||P5)

Copycat

L Powerful boosting DT induction algorithms for
discriminator h. Can we rely on them to train G ?

Train G at “O” additional cost & with guarantees
5 GT G and DT h share a tree (graph)

b G copies h's tree at induction time &
completes it (p) for hardest current generator

b G = balanced distribution of the weak learning
assumption in Kearns & Mansour, STOC'96.

b trivial computations for G + geometric
convergence in density ratio loss for free from

boosting Google Research

(details in paper)
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Experiments
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Summary

Experiments carried out with Copycat training (fast, simple, little hyperparameter tuning
required, ...), using Kearns and Mansour’s optimal top-down algorithm;

1 classical toy generative problem + 4 more experiments against SOTA

b Toy: 2D heatmaps of densities (vs CTGAN)

Missing data imputation: predict missing values in a dataset (vs MICE)

b Gen-discrim: discriminate between fake and real examples (vs CTGAN)

B Train-gen (supervised data): train model over fake data, test over real (vs CTGAN)

b Gen-aug (supervised data): augment real with generated + Train-gen (vs CTGAN)

(details in paper)
CTGAN: Xu, Skoularidou, Cuesta-Infante & Veeramachaneni, NeurlPS'19 Go gle Research
MICE: van Buuren, “Flexible imputation of missing data”, Chapman & Hall / CRC, 2018
Nock & Guillame-Bert — Generative Trees: Adversarial and Copycat



XAlin a

[#1:root]
|-[0.0489, [ lng (CONTINUOUS) in [-76.8665, -72.7167]; |-1|-1| ] 1--[#2]
| |-10.0366, [ search vehicle (NOMINAL) in {TRUE}; |-1|-1| ] ]--[#100]
| |-[0.1212, [ lat (CONTINUOUS) in [40.7067, 41.7329]; |-1|-1| ] 1--[#3010 (sampling)]
\-[0.8788, [ lat (CONTINUOUS) in [41.7329, 42.3426]; |-1|-1| ] 1--[#3011]
|-[0.8276, [ lat (CONTINUOUS) in [41.7329, 41.8060]; |-1|-1| ] ]1--[#3338]
| |-[0.8333, [ warning issued (NOMINAL) in {FALSE}; |-1|-1| ] ]--[#3756]
|-[0.9500, [ raw subject race code (NOMINAL) in {W, B}; |-1|-1| ] ]--[#4184]
| |-[0.2632, [ reason for stop (NOMINAL) in {TrafficControlSignal, Other}; |-1|-1| ] ]--[#4380 (sampling)]
| \-[0.7368, [ reason for stop (NOMINAL) in {StopSign, DefectiveLights, CellPhone, SuspendedLicense, Registration
| |-[0.5000, [ district (NOMINAL) in {BARRYSQUARE, NORTHMEADOWS}; |-1|-1| ] ]--[#5788]
| | |-[0.4286, [ subject age (INTEGER) in {14, 15, ..., 29}; |-1|-1| ] ]--[#9118 (sampling)]
| | \-[0.5714, [ subject age (INTEGER) in {30, 31, ..., 94}; |-1|-1| ] 1--[#9119 (sampling)]
| \-[0.5000, [ district (NOMINAL) in {SOUTHWEST, ASYLUMHILL, PARKVILLE, FROGHOLLOW, BEHINDTHEROCK3, SOUTHGREEN,
| \-[0.0500, [ raw_subject race code (NOMINAL) in {A, I}; |-1|-1| ] ]--[#4185 (sampling)]
\-[0.1667, [ warning issued (NOMINAL) in {TRUE}; |-1|-1| ] ]--[#3757 (sampling)]
\-[0.1724, [ lat (CONTINUOUS) in [41.8060, 42.3426]; |-1|-1| ] ]--[#p220—tcamalinc\]
[0.9634, [ search_vehicle (NOMINAL) in {FALSE}; |-1|-1| ] ]--[#101] . e .
|-[0.0265, [ raw_search authorization code (NOMII!IALl) i1|1 {c, 1}; |-1|-1 T1 disparities in density
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
W=

|-[0.0870, [ lat (CONTINUOUS) in [40.7067, 41.6730]; |-1|-1]| ] 1--[ on “car/driver based search”
\-[0.9130, [ lat (CONTINUOUS) in [41.6730, 42.3426]; |-1|-1| ] ]1--[#ew=z=>

Example of generative tree learned on Stanford Open Policing / Hartford (more examples in paper)

Google Research
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Toy 2D heat maps

L Setup: generate data, compare with ground truth (10 000 nodes GT, 1K epoch CTGANS)

5 Some results:

us CTGAN round truth
A
=5
(1]
(_g Simulated
C
©
® 5
[ ‘©
O s
© % UcCl
8 £
=
B
5
s ucl
8

Google Research
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Missing Data Imputation

L Summary: synthetic data, remove g% features (Missing Completely At Random), impute
w/ GT vs SOTA = mice (CART: use decision trees to predict missing in one column given the
others, cycle through all columns several times)

In green: domain; red: imputed data

3t . #W e ‘,.
i
I (more examples &
0 »}‘ . ““4 more details in paper)
N 2
Ll o=
-4

mice|CART uses
10 trees

We use 1 tree Google Research
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Gen-aug

L Summary: use part of real data to train generator, supplement remaining training data
with varying % of generated data, train supervised classifier for the task, evaluate accuracy
on test data

Google Research
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Gen-aug

L Summary: use part of real data to train generator, supplement remaining training data
with varying % of generated data, train supervised classifier for the task, evaluate accuracy
on test data — example of UCI DNA, 181 binary features

J us
\ ct-gan ¢
| < - copy o
uniform

% generated used
o o o o
o N B O o

0.3 0.4 0.5 0.6 0.7 0.8 0

Accuracy (higher = better) F=—=—========-=-- |
I “Optimum”: real data
: supplementation learch

Nock & Guillame-Bert — Generative Trees: Adversarial and Copycat



Gen-aug

L Summary: use part of real data to train generator, supplement remaining training data
with varying % of generated data, train supervised classifier for the task, evaluate accuracy
on test data — example of UCI DNA, 181 binary features

8 - . us
\ ct-gan ¢
@ 0.8 . | gan o
g 0.6 AR wniform |
9 .
© i I I
E) 0.4 g ! + ‘ : |
(] 4 4 | .
5 02 | ‘ t4l -ﬁ | .
£ 9 | it Tl N " T I "
0.3 0.4 0.5 0.6 0.7 0.8 0.9 Em—————-
I
Accuracy (higher = better — B
y (hig ) Optimum

Google Research
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Conclusion / future work
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Our contributions

b new tight formulation of the GAN losses from the supervised side (properness) if
discriminator calibrated, gives the chi square as a “default” generator training loss

b new generative models & adversarial training w/ boosting compliant convergence

b new cheap training for generative models (copycat) + “boosting for free” convergence

Future work includes

b XAl / fairness: constrained induction of generative models
D privacy
b lots of formal questions (generalisation, pruning generators, ensembles of GTs, etc.)
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Thank you'!
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https://github.com/google/yggdrasil-decision-forests

