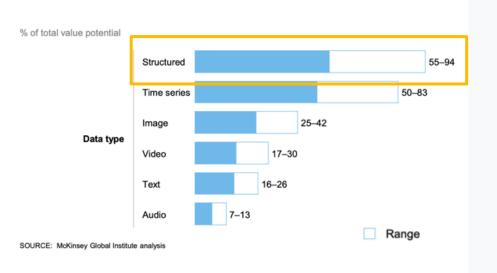
Generative Trees: Adversarial and Copycat

Richard Nock

Mathieu Guillame-Bert

Why this work?

Tabular data: important but scarce generative



- Modern generative techniques = Neural Networks (NN) / Deep Learning (DL) based
- On supervised learning side, the best techniques are (still) not DL-based but tree-based;
 competing requires sophisticated+ DL techs
- "Lack of novelty" in state of the art (SOTA)
 modern generative approaches for tabular data
- Unconvincing results for DL + tabular pipelines

Camino et al., ICBINB@NeurIPS'20

Google Research

Chui et al., Notes from the Al frontier, McKinsey, 2018

Tabular data, Supervised

Losses: proper

Savage, JASA'71

Models: tree-based

Breiman et al. '84

Algorithms: boosting

Kearns & Mansour, STOC'96

Tabular data, Supervised

Savage, JASA'71

Models: tree-based

Breiman et al. '84

Algorithms: boosting

Kearns & Mansour, STOC'96

This paper, generative, tabular data

Background: GAN game

Losses: designed from *discriminator* & in the **proper** framework

Models: tree-based

Algorithms: boosting

→ adversarial

Loss functions

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\overset{\text{(real)}}{P},\overset{\text{(}}{N}) \doteq \int f\left(\frac{\mathrm{d}P}{\mathrm{d}N}\right)\mathrm{d}N \qquad \textit{f-divergence} \\ \qquad \qquad \qquad \textit{(fake)} \qquad \textit{``Information of Binary Task''}$$

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\overset{\bullet}{P},\overset{\bullet}{N}) \doteq \int f\left(\frac{\mathrm{d}P}{\mathrm{d}N}\right)\mathrm{d}N \qquad \textit{f-divergence}$$

→ variational formulation

$$\mathbb{I}_{f}(\mathbf{P}, \mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \frac{\mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^{\star} \circ \tilde{h}(\mathsf{X})]}{\mathbb{E}_{\mathbf{N}}[f^{\star} \circ \tilde{h}(\mathsf{X})]} \right\}$$

Not an equality in general

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\overset{(\text{real})}{\mathsf{P}},\overset{\dot{}}{\mathsf{N}}) \doteq \int f\left(\frac{\mathrm{d}\mathsf{P}}{\mathrm{d}\mathsf{N}}\right)\mathrm{d}\mathsf{N} \qquad \textit{f-divergence}$$

→ variational formulation

$$\mathbb{I}_f(\mathbf{P},\mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \frac{\mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^\star \circ \tilde{h}(\mathsf{X})]}{-\mathbb{E}_{\mathbf{N}}[f^\star \circ \tilde{h}(\mathsf{X})]} \right\}$$

Not an equality in general

 \hookrightarrow discriminator hidden in \tilde{h} , seeks to increase the IBT by discriminating real vs fake (w/ $\bf H$ + $\bf G$)

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\overset{\text{(real)}}{\mathsf{P}},\overset{\text{(real)}}{\mathsf{N}}) \doteq \int f\left(\frac{\mathrm{d}\mathrm{P}}{\mathrm{d}\mathrm{N}}\right)\mathrm{d}\mathrm{N} \qquad \textit{f-divergence}$$

→ variational formulation

$$\mathbb{I}_f(\mathbf{P}, \mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \frac{\mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^\star \circ \tilde{h}(\mathsf{X})]}{\mathbb{E}_{\mathbf{N}}[f^\star \circ \tilde{h}(\mathsf{X})]} \right\}$$

Not an equality in general

 \rightarrow discriminator hidden in \tilde{h} , seeks to increase the IBT by discriminating real vs fake (w/ H + G)

⇒ generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\overset{\bullet}{P},\overset{\bullet}{N}) \doteq \int f\left(\frac{\mathrm{d}P}{\mathrm{d}N}\right)\mathrm{d}N \qquad \textit{f-divergence}$$

$$\qquad \qquad \textit{(fake)} \qquad \qquad \textit{``Information of Binary Task''}$$

→ variational formulation

$$\mathbb{I}_{f}(\mathbf{P}, \mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^{*} \circ \tilde{h}(\mathsf{X})] \right\}$$

Not an equality in general

 \rightarrow discriminator hidden in h, seeks to increase the IBT by discriminating real vs fake (w/ H + G)

 \rightarrow generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

Our framework

Properness: $\mathbb{P}[Y=1]$ $\mathbb{P}[X|Y=1]$ $\mathbb{P}[X|Y=-1]$ \mapsto Binary task $\mathbf{B} \doteq (\pi, \mathbf{P}, \mathbf{N})$

- \rightarrow Mixture $M \doteq \pi \cdot P + (1 \pi) \cdot N$

Measure-based loss, crafted from generator

$$\begin{array}{c} \text{(real)} \\ \mathbb{I}_f(\dot{\mathbf{P}}, \mathbf{N}) \doteq \int f\left(\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{N}}\right) \mathrm{d}\mathbf{N} & \textit{f-divergence} \\ \text{(fake)} & \textit{``Information of Binary Task''} \end{array}$$

→ variational formulation

$$\mathbb{I}_f(\mathbf{P},\mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \underbrace{\mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^* \circ \tilde{h}(\mathsf{X})]}_{\mathbf{H}} \right\}$$

Not an equality in general

 \rightarrow discriminator hidden in h, seeks to increase the IBT by discriminating real vs fake (w/ H + G)

 \rightarrow generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

Our framework

Properness:
$$\mathbb{P}[Y=1]$$
 $\mathbb{P}[X|Y=1]$ $\mathbb{P}[X|Y=-1]$ \mapsto Binary task $\mathbf{B} \doteq (\pi, \mathbf{P}, \mathbf{N})$

$$ightharpoonup$$
 Binary task $\mathrm{B} \doteq (\pi,\mathrm{P},\mathrm{N})$

$$\rightarrow$$
 Mixture $M \doteq \pi \cdot P + (1 - \pi) \cdot N$

$$\hookrightarrow$$
 discriminator learns a posterior $\eta: \mathcal{X} \to [0,1]$ $\hat{\mathbb{P}}[\mathbf{Y}=1|\mathbf{X}]$

$$\label{eq:posterior} \begin{array}{l} \text{\mapsto ``ldeal''$ posterior computes $\mathbb{P}[Y=1|X]$} \\ \eta^{\star} = \pi \cdot \frac{\mathrm{d}P}{\mathrm{d}M} \text{ Bayes posterior} \end{array}$$

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\overset{\bullet}{P},\overset{\bullet}{N}) \doteq \int f\left(\frac{\mathrm{d}P}{\mathrm{d}N}\right) \mathrm{d}N \qquad \textit{f-divergence}$$

$$\qquad \qquad \textit{(fake)} \qquad \qquad \textit{``Information of Binary Task''}$$

→ variational formulation

$$\mathbb{I}_{f}(\mathbf{P}, \mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^{*} \circ \tilde{h}(\mathsf{X})] \right\}$$

Not an equality in general

 \rightarrow discriminator hidden in h, seeks to increase the IBT by discriminating real vs fake (w/ H + G)

 \rightarrow generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

Our framework

Properness:
$$\mathbb{P}[Y=1]$$
 $\mathbb{P}[X|Y=1]$ $\mathbb{P}[X|Y=-1]$ \mapsto Binary task $\mathbf{B} \doteq (\pi, \mathbf{P}, \mathbf{N})$

$$ightharpoonup$$
 Binary task $B \doteq (\pi, P, N)$

$$\hookrightarrow$$
 Mixture $M \doteq \pi \cdot P + (1 - \pi) \cdot N$

$$\ \, \mapsto \text{discriminator learns a } \textit{posterior} \ \, \underset{\hat{\P}[Y = 1|X]}{\boldsymbol{\eta}} : \mathcal{X} \to [0,1]$$

$$au$$
 "Ideal" posterior computes $\mathbb{P}[\mathsf{Y}=1|\mathsf{X}]$ $\eta^\star=\pi\cdot\frac{\mathrm{d}P}{\mathrm{d}M}$ Bayes posterior

$$\forall$$
 a **loss** can be decomposed in *two partial losses* $\ell(y,u) \doteq \llbracket y=1 \rrbracket \cdot \boxed{\ell_1(u)} + \llbracket y=-1 \rrbracket \cdot \boxed{\ell_{-1}(u)}$ estimated posterior in [0,1] true label / class in {-1,1}

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\overset{\bullet}{P},\overset{\bullet}{N}) \doteq \int f\left(\frac{\mathrm{d}P}{\mathrm{d}N}\right)\mathrm{d}N \qquad \textit{f-divergence}$$

$$\qquad \qquad \textit{(fake)} \qquad \qquad \textit{``Information of Binary Task''}$$

→ variational formulation

$$\mathbb{I}_{f}(\mathbf{P}, \mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^{*} \circ \tilde{h}(\mathsf{X})] \right\}$$

Not an equality in general

 \rightarrow discriminator hidden in h, seeks to increase the IBT by discriminating real vs fake (w/ H + G)

 \rightarrow generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

Our framework

Properness:
$$\mathbb{P}[Y=1]$$
 $\mathbb{P}[X|Y=1]$ $\mathbb{P}[X|Y=-1]$ \mapsto Binary task $\mathbf{B} \doteq (\pi, \mathbf{P}, \mathbf{N})$

$$ightharpoonup$$
 Binary task $B \doteq (\pi, P, N)$

$$\rightarrow$$
 Mixture $M \doteq \pi \cdot P + (1 - \pi) \cdot N$

$$\hookrightarrow$$
 discriminator learns a posterior $\eta: \mathcal{X} \to [0,1]$ $\hat{\mathbb{P}}[\mathbf{Y}=1|\mathbf{X}]$

$$o$$
 "Ideal" posterior computes $\mathbb{P}[\mathsf{Y}=1|\mathsf{X}]$ $\eta^\star=\pi\cdot\frac{\mathrm{d}P}{\mathrm{d}M}$ Bayes posterior

→ a **loss** can be decomposed in *two partial losses*

$$\ell(y,u) \doteq \llbracket y=1 \rrbracket \cdot \ell_1(u) + \llbracket y=-1 \rrbracket \cdot \ell_{-1}(u)$$
 estimated posterior in [0,1] true label / class in {-1,1}

$$\rightarrow$$
 a loss is symmetric iff $\ell_1(u) = \ell_{-1}(1-u)$

Google Research

Nowozin et al., NeurlPS'16, Reid & Williamson, JMLR'11

GAN framework in a <a>

Measure-based loss, crafted from *generator*

$$\mathbb{I}_f(\overset{\bullet}{P},\overset{\bullet}{N}) \doteq \int f\left(\frac{\mathrm{d}P}{\mathrm{d}N}\right)\mathrm{d}N \qquad \textit{f-divergence}$$

$$\qquad \qquad \textit{(fake)} \qquad \qquad \textit{"Information of Binary Task"}$$

→ variational formulation

$$\mathbb{I}_{f}(\mathbf{P}, \mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathbf{X})] - \mathbb{E}_{\mathbf{N}}[f^{*} \circ \tilde{h}(\mathbf{X})] \right\}$$

Not an equality in general

 \rightarrow discriminator hidden in h, seeks to increase the IBT by discriminating real vs fake (w/ H + G)

→ generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

Nowozin et al., NeurIPS'16, Reid & Williamson, JMLR'11

Our framework

Properness:
$$\mathbb{P}[Y=1]$$
 $\mathbb{P}[X|Y=1]$ $\mathbb{P}[X|Y=-1]$ \mapsto Binary task $\mathbf{B} \doteq (\pi, \mathbf{P}, \mathbf{N})$

$$\Rightarrow Binary \ lask \ \mathbf{D} = (\pi, \mathbf{F}, \mathbf{N})$$

$$\hookrightarrow$$
 Mixture $M \doteq \pi \cdot P + (1 - \pi) \cdot N$
 \hookrightarrow discriminator learns a posterior $\eta : \mathcal{X} \rightarrow [0, 1]$
 $\uparrow \hat{\mathbb{P}}[Y = 1|X]$

$$\rightarrow$$
 "Ideal" posterior computes $\mathbb{P}[Y = 1|X]$

$$\eta^\star = \pi \cdot rac{\mathrm{dP}}{\mathrm{dM}}$$
 Bayes posterior

$$\downarrow$$
 a **loss** can be decomposed in *two partial losses* $\ell(y,u) \doteq \llbracket y=1 \rrbracket \cdot \boxed{\ell_1(u)} + \llbracket y=-1 \rrbracket \cdot \boxed{\ell_{-1}(u)}$ estimated posterior in [0,1]

true label / class in {-1,1}
$$\rightarrow$$
 a loss is symmetric iff $\ell_1(u) = \ell_{-1}(1-u)$

→ a loss is <u>strictly proper</u> iff Bayes posterior solely realises the **inf** of

$$\underline{L}(p) \doteq \inf_{u} \mathbb{E}_{\mathbf{Y} \sim \mathbf{B}(p)}[\ell(\mathbf{Y}, u)] \quad \text{Google Research}$$

Bayes risk (concave)

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\overset{\bullet}{\mathbf{P}},\overset{\bullet}{\mathbf{N}}) \doteq \int f\left(\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{N}}\right) \mathrm{d}\mathbf{N} \qquad \textit{f-divergence}$$

$$\qquad \qquad \textit{(fake)} \qquad \qquad \textit{"Information of Binary Task"}$$

→ variational formulation

$$\mathbb{I}_{f}(\mathbf{P}, \mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^{*} \circ \tilde{h}(\mathsf{X})] \right\}$$

Not an equality in general

 \rightarrow discriminator hidden in h, seeks to increase the IBT by discriminating real vs fake (w/ H + G)

 \rightarrow generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

Nowozin et al., NeurlPS'16, Reid & Williamson, JMLR'11

Our framework

Properness:
$$\mathbb{P}[Y=1]$$
 $\mathbb{P}[X|Y=1]$ $\mathbb{P}[X|Y=-1]$ \mapsto Binary task $B \doteq (\pi, P, N)$

$$\rightarrow$$
 Binary task $B \doteq (\pi, P, N)$

$$\rightarrow$$
 Mixture $M \doteq \pi \cdot P + (1 - \pi) \cdot N$

$$\ \, \text{discriminator learns a } \textit{posterior} \ \, \underset{\hat{\P} \hat{\mathbb{P}}[\mathsf{Y}\,=\,1|\mathsf{X}]}{\boldsymbol{\eta}} : \mathcal{X} \to [0,1]$$

$$au$$
 "Ideal" posterior computes $\mathbb{P}[\mathsf{Y}=1|\mathsf{X}]$ $\eta^\star=\pi\cdot\frac{\mathrm{d}P}{\mathrm{d}M}$ Bayes posterior

→ a **loss** can be decomposed in *two partial losses* $\ell(y, u) \doteq [y = 1] \cdot \ell_1(u) + [y = -1] \cdot \ell_{-1}(u)$

estimated posterior in [0,1]
true label / class in {-1,1}

$$\rightarrow$$
 a loss is symmetric iff $\ell_1(u) = \ell_{-1}(1-u)$

→ a loss is <u>strictly proper</u> iff Bayes posterior

solely realises the **inf** of
$$\underline{L}(p) \doteq \inf_{u} \mathbb{E}_{\mathsf{Y} \sim B(p)}[\ell(\mathsf{Y}, u)]$$

$$= \underbrace{L}_{u}(p) = \inf_{u} \mathbb{E}_{\mathsf{Y} \sim B(p)}[\ell(\mathsf{Y}, u)]$$

$$= \underbrace{L}_{u}(p) = \inf_{u} \mathbb{E}_{\mathsf{Y} \sim B(p)}[\ell(\mathsf{Y}, u)]$$

$$= \underbrace{L}_{u}(p) = \underbrace{L}_{$$

Measure-based loss, crafted from *generator*

$$\mathbb{I}_f(\mathbf{P},\mathbf{N}) \doteq \int f\left(\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{N}}\right) \mathrm{d}\mathbf{N} \qquad \textit{f-divergence}$$

$$\qquad \qquad \textit{(fake)} \qquad \textit{"Information of Binary Task"}$$

→ variational formulation

$$\mathbb{I}_{f}(\mathbf{P}, \mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^{*} \circ \tilde{h}(\mathsf{X})] \right\}$$

Not an equality in general

 \rightarrow discriminator hidden in h, seeks to increase the IBT by discriminating real vs fake (w/ H + G)

 \rightarrow generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

Our framework

Partial losses ℓ_1, ℓ_{-1} , Bayes posterior η^* & risk L

Measure-based loss, crafted from *generator*

$$\mathbb{I}_f(\overset{\bullet}{P},\overset{\bullet}{N}) \doteq \int f\left(\frac{\mathrm{d}P}{\mathrm{d}N}\right) \mathrm{d}N \qquad \textit{f-divergence}$$

$$\qquad \qquad \textit{(fake)} \qquad \qquad \textit{``Information of Binary Task''}$$

→ variational formulation

$$\mathbb{I}_{f}(\mathbf{P}, \mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \underbrace{\mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^{*} \circ \tilde{h}(\mathsf{X})]}_{\mathbf{H}} \right\}$$

Not an equality in general

 \hookrightarrow discriminator hidden in \tilde{h} , seeks to increase the IBT by discriminating real vs fake (w/ H + G)

→ generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

Our framework

Partial losses ℓ_1, ℓ_{-1} , Bayes posterior η^* & risk \underline{L} \rightarrow posterior $\tilde{\eta}$ is said **calibrated** iff satisfies

$$ilde{\eta} = \pi \cdot rac{\mathrm{d} P_{ ilde{\eta}}}{\mathrm{d} M_{ ilde{\eta}}}$$
 To the level sets of $ilde{\eta}$

 \rightarrow ex: the prior π , Bayes posterior η^* are calibrated

→ any decision tree (w/ empirical posterior prediction at the leaves) is calibrated

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\overset{\bullet}{P},\overset{\bullet}{N}) \doteq \int f\left(\frac{\mathrm{d}P}{\mathrm{d}N}\right) \mathrm{d}N \qquad \textit{f-divergence}$$

$$\qquad \qquad \textit{(fake)} \qquad \qquad \textit{``Information of Binary Task''}$$

→ variational formulation

$$\mathbb{I}_{f}(\mathbf{P}, \mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \underbrace{\mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^{*} \circ \tilde{h}(\mathsf{X})]}_{\mathbf{H}} \right\}$$

Not an equality in general

 \mapsto discriminator hidden in \tilde{h} , seeks to increase the IBT by discriminating real vs fake (w/ H + G)

→ generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

Our framework

Partial losses ℓ_1, ℓ_{-1} , Bayes posterior η^* & risk \underline{L} \rightarrow posterior $\tilde{\eta}$ is said **calibrated** iff satisfies

$$ilde{\eta} = \pi \cdot rac{dP_{ ilde{\eta}}}{dM_{ ilde{\eta}}}$$
 T-algebra coarsened to the level sets of $ilde{ ilde{\eta}}$

 \rightarrow ex: the prior π , Bayes posterior η^* are calibrated

→ any decision tree (w/ empirical posterior prediction at the leaves) is calibrated

 \hookrightarrow for any calibrated η , its statistical information is

$$\Delta\underline{\mathbb{L}}(\tilde{\eta}, M_{\tilde{\eta}}) = \underline{L}(\pi) - \underbrace{\mathbb{E}_{\mathsf{X} \sim M_{\tilde{\eta}}}[\underline{L}(\tilde{\eta}(\mathsf{X}))]}_{\substack{\mathsf{CART}, \, \mathsf{C4.5}, \, \mathsf{etc.} \\ (\mathsf{splitting} \, \mathsf{criterion})}}$$

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\overset{\bullet}{P},\overset{\bullet}{N}) \doteq \int f\left(\frac{\mathrm{d}P}{\mathrm{d}N}\right) \mathrm{d}N \qquad \textit{f-divergence}$$

$$\qquad \qquad \textit{(fake)} \qquad \qquad \textit{``Information of Binary Task''}$$

→ variational formulation

$$\mathbb{I}_{f}(\mathbf{P}, \mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^{*} \circ \tilde{h}(\mathsf{X})] \right\}$$

Not an equality in general

 \rightarrow discriminator hidden in h, seeks to increase the IBT by discriminating real vs fake (w/ H + G)

 \rightarrow generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

Our framework

Partial losses ℓ_1, ℓ_{-1} , Bayes posterior η^* & risk \underline{L} For any calibrated η , its *statistical information*:

$$\Delta\underline{\mathbb{L}}(\tilde{\eta}, M_{\tilde{\eta}}) = \underline{L}(\pi) - \mathbb{E}_{\mathsf{X} \sim M_{\tilde{\eta}}}[\underline{L}(\tilde{\eta}(\mathsf{X}))]$$

Measure-based loss, crafted from generator

 $\mathbb{I}_f(\mathbf{P}, \mathbf{N}) \doteq \int f\left(\frac{\mathrm{dP}}{\mathrm{dN}}\right) \mathrm{dN}$

"Information of Binary Task"

→ variational formulation

$$\mathbb{I}_f(\mathbf{P},\mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathbf{X})] - \mathbb{E}_{\mathbf{N}}[f^\star \circ \tilde{h}(\mathbf{X})] \right\} \begin{array}{c} \text{proper symmetric and differentiable loss } \ell \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{N}_{\tilde{\eta}}) = \underset{\text{Not shown for readability}}{\mathbf{H}} + \underset{\tilde{\mathbf{Q}}}{\mathbf{G}} = \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{N}_{\tilde{\eta}}) = \underset{\text{Not shown for readability}}{\mathbf{H}} + \underset{\tilde{\mathbf{Q}}}{\mathbf{G}} = \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{N}_{\tilde{\eta}}) = \underset{\text{Not shown for readability}}{\mathbf{H}} + \underset{\tilde{\mathbf{Q}}}{\mathbf{G}} = \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{N}_{\tilde{\eta}}) = \underset{\tilde{\mathbf{Q}}}{\mathbf{H}} + \underset{\tilde{\mathbf{Q}}}{\mathbf{G}} = \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{N}_{\tilde{\eta}}) = \underset{\tilde{\mathbf{Q}}}{\mathbf{H}} + \underset{\tilde{\mathbf{Q}}}{\mathbf{G}} = \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{N}_{\tilde{\eta}}) = \underset{\tilde{\mathbf{Q}}}{\mathbf{H}} + \underset{\tilde{\mathbf{Q}}}{\mathbf{G}} = \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{N}_{\tilde{\eta}}) = \underset{\tilde{\mathbf{Q}}}{\mathbf{H}} + \underset{\tilde{\mathbf{Q}}}{\mathbf{G}} = \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{N}_{\tilde{\eta}}) = \underset{\tilde{\mathbf{Q}}}{\mathbf{H}} + \underset{\tilde{\mathbf{Q}}}{\mathbf{G}} = \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{N}_{\tilde{\eta}}) = \underset{\tilde{\mathbf{Q}}}{\mathbf{H}} + \underset{\tilde{\mathbf{Q}}}{\mathbf{G}} = \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{N}_{\tilde{\eta}}) = \underset{\tilde{\mathbf{Q}}}{\mathbf{H}} + \underset{\tilde{\mathbf{Q}}}{\mathbf{G}} = \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{N}_{\tilde{\eta}}) = \underset{\tilde{\mathbf{Q}}}{\mathbf{H}} + \underset{\tilde{\mathbf{Q}}}{\mathbf{G}} = \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{N}_{\tilde{\eta}}) = \underset{\tilde{\mathbf{Q}}}{\mathbf{H}} + \underset{\tilde{\mathbf{Q}}}{\mathbf{G}} = \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) = \underbrace{\mathbf{Q}}_{\tilde{\eta}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) = \underbrace{\mathbf{Q}}_{\tilde{\eta}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) = \underbrace{\mathbf{Q}}_{\tilde{\eta}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf{P}_{\tilde{\eta}},\mathbf{M}_{\tilde{\eta}}) \\ \mathbb{I}_{f^{\pi}}(\mathbf$$

Not an equality in general

$$\hookrightarrow$$
 discriminator hidden in \tilde{h} , seeks to increase the IBT by discriminating real vs fake (w/ \mathbf{H} + \mathbf{G}) \hookrightarrow generator = \mathbf{N} , seeks to decrease the IBT by

Nowozin et al., NeurlPS'16, Reid & Williamson, JMLR'11

generating fake data that looks like real (w/ G)

Our framework

Partial losses ℓ_1, ℓ_{-1} , Bayes posterior η^* & risk \underline{L} For any calibrated η , its *statistical information*:

$$\Delta \underline{\mathbb{L}}(\tilde{\eta}, M_{\tilde{\eta}}) = \underline{\underline{L}}(\pi) - \mathbb{E}_{\mathsf{X} \sim M_{\tilde{\eta}}}[\underline{L}(\tilde{\eta}(\mathsf{X}))]$$

Theorem: for any calibrated $\tilde{\eta}$ and any strictly proper symmetric and differentiable loss ℓ

$$\begin{array}{c} \prod_{\boldsymbol{f}} f^{\boldsymbol{\pi}} \left(\mathbf{1} \ \boldsymbol{\eta} \ , \mathbf{1} \mathbf{N} \boldsymbol{\eta} \ \right) & \longrightarrow_{\mathbf{Not shown for readability}} \\ + \textit{if density ratio fct } \ell_{-1}^{\scriptscriptstyle \mathrm{DR}}(\boldsymbol{\rho}) \doteq \ell_{-1} \left(\frac{1}{1+\boldsymbol{\rho}}\right) \mathsf{cvx}, \textit{then} \\ \mathbf{G} \leq \underline{L}(\boldsymbol{\pi}) - (1-\boldsymbol{\pi}) \cdot \ell_{-1} \left(\frac{\boldsymbol{\pi}}{1+(1-\boldsymbol{\pi}) \cdot |\boldsymbol{\chi}^2(\mathbf{N}_{\tilde{\boldsymbol{\eta}}}||\mathbf{P}_{\tilde{\boldsymbol{\eta}}})}\right) \end{aligned}$$

chi square Google Research

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\overset{\text{(real)}}{\mathrm{P}},\overset{\text{(real)}}{\mathrm{N}}) \doteq \int f\left(\frac{\mathrm{d}\mathrm{P}}{\mathrm{d}\mathrm{N}}\right)\mathrm{d}\mathrm{N} \qquad \textit{f-} \text{divergence}$$

"Information of Binary Task"

→ variational formulation

$$\mathbb{I}_{f}(\mathbf{P}, \mathbf{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathbf{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathbf{N}}[f^{*} \circ \tilde{h}(\mathsf{X})] \right\} \mathbb{I}_{f_{\tilde{\mathbf{\Pi}}}^{\pi}}(\mathbf{P}_{\tilde{\mathbf{\eta}}}, \mathbf{N}_{\tilde{\mathbf{\eta}}})$$

Not an equality in general

$$\hookrightarrow$$
 discriminator hidden in \tilde{h} , seeks to increase the IBT by discriminating real vs fake (w/ H + G)

 \rightarrow generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

Nowozin et al., NeurlPS'16, Reid & Williamson, JMLR'11

Our framework

Partial losses ℓ_1, ℓ_{-1} , Bayes posterior η^* & risk \underline{L} For any calibrated $\widetilde{\eta}$, its statistical information:

$$\Delta \underline{\mathbb{L}}(\tilde{\eta}, M_{\tilde{\eta}}) = \underline{\mathit{L}}(\pi) - \mathbb{E}_{\mathsf{X} \sim M_{\tilde{\eta}}}[\underline{\mathit{L}}(\tilde{\eta}(\mathsf{X}))]$$

Theorem: for an proper symmetri True for all tested losses; proof of partial ppty in general case $+ \textit{if } \textit{density ratio fct } \ell_{-1}^{\text{\tiny DR}}(\rho) \doteq \ell_{-1}\left(\frac{1}{1+\rho}\right) \textit{cvx, then}$ $\mathbf{G} \leq \underline{L}(\pi) - (1-\pi) \cdot \ell_{-1}\left(\frac{\pi}{1+(1-\pi) \cdot |\chi^2(N_{\tilde{\eta}}||P_{\tilde{\eta}})}\right)$

chi square Google Research

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\mathbf{P}, \mathbf{N}) \doteq \int f\left(\frac{\mathrm{dP}}{\mathrm{dN}}\right) \mathrm{dN}$$
 f-divergence

→ variatio

Our framework

Partial losses ℓ_1, ℓ_{-1} , Bayes posterior η^* & risk \underline{L}

For any calibrated η , its statistical information:

$$\Delta \underline{\mathbb{L}}(\tilde{\eta}, M_{\tilde{\eta}}) = \underline{\mathcal{L}}(\pi) - \mathbb{E}_{\mathsf{X} \sim M_{\tilde{\eta}}}[\underline{\mathcal{L}}(\tilde{\eta}(\mathsf{X}))]$$

Summary

Not an equality in general

 \rightarrow discriminator hidden in h, seeks to increase the IBT by discriminating real vs fake (w/ H + G)

 \rightarrow generator = N, seeks to decrease the IBT by generating fake data that looks like real (w/ G)

+ if density ratio fct $\ell_{-1}^{DR}(\rho) \doteq \ell_{-1}\left(\frac{1}{1+\rho}\right)$ cvx, then

$$\mathbf{G} \leq \underline{L}(\pi) - (1 - \pi) \cdot \ell_{-1} \left(\frac{\pi}{1 + (1 - \pi) \cdot |\chi^2(N_{\tilde{\eta}}||P_{\tilde{\eta}})|} \right)$$

chi square

Nowozin et al., NeurlPS'16, Reid & Williamson, JMLR'11

Measure-based loss, crafted from generator

 $\mathbb{I}_f(\mathbf{P}, \mathbf{N}) \doteq \int f\left(\frac{\mathrm{dP}}{\mathrm{dN}}\right) \mathrm{dN}$ f-divergence

"Information of Binary Task"

→ variational formula in

$$\mathbb{I}_f(\mathrm{P},\mathrm{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathrm{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathrm{N}}[f^\star \circ \tilde{h}(\mathsf{X})] \right\} \qquad \mathbb{I}_{f^\pi}(\mathrm{P}_{\tilde{\eta}},\mathrm{N}_{\tilde{\eta}}) = \underbrace{\mathsf{H}}_{\mathsf{Not shown for readability}} + \underbrace{\mathsf{G}}_{\mathsf{Not shown for readability}} \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathrm{M}_{\tilde{\eta}})$$

Not an equality in general

 \rightarrow discriminator hidden in \tilde{h} , seeks to increase

ke (w/ **H** + **G**) se the IBT by

Gets the discriminator's e real (w/ G) loss from the generator's

Our framework

Partial losses ℓ_1, ℓ_{-1} , Bayes posterior η^* & risk \underline{L} For any calibrated η , its *statistical information*:

$$\Delta \underline{\mathbb{L}}(\tilde{\eta}, \mathrm{M}_{\tilde{\eta}}) = \underline{L}(\pi) - \mathbb{E}_{\mathsf{X} \sim \mathrm{M}_{\tilde{\eta}}}[\underline{L}(\tilde{\eta}(\mathsf{X}))]$$

Theorem: for any calibrated $\tilde{\eta}$ and any strictly proper symmetric and differentiable loss ℓ

$$\begin{split} \mathbb{I}_{f^{\pi}_{\widehat{\mathbf{\eta}}}}(P_{\widetilde{\mathbf{\eta}}},N_{\widetilde{\mathbf{\eta}}}) &= \underset{\text{Not shown for readability}}{\overset{\text{\tiny L}}{\mathbf{\eta}}} = \Delta \underline{\mathbb{L}}(\widetilde{\mathbf{\eta}},M_{\widetilde{\mathbf{\eta}}}) \\ &+ \textit{if density ratio fct } \ell_{-1}^{\text{\tiny DR}}(\rho) \doteq \ell_{-1}\left(\frac{1}{1+\rho}\right) \text{cvx} \textit{then} \end{split}$$

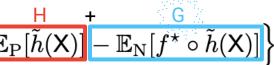
 π) · $\chi^2(N_{ ilde{\eta}}||P_{ ilde{\eta}})$ Gets the generator's loss chi square from the discriminator's ogle Research Adversarial and Copycat

amson, JMLR'11

Measure-based loss, crafted from generator

 $\mathbb{I}_f(\overset{\bullet}{\mathbf{P}},\overset{\bullet}{\mathbf{N}}) \doteq \int f\left(\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{N}}\right) \mathrm{d}\mathbf{N}$ f-divergence

"Information of Binary Task"



amson, JMLR'11

Not an equ____in general

$$\rightarrow$$
 discriminator hidden in \hat{h} , seeks to increase

Loose approximation (inequality) via variational e real (w/ G) formulation

Our framework

Partial losses ℓ_1, ℓ_{-1} , Bayes posterior η^* & risk \underline{L}

For any calibrated
$$\tilde{\eta}$$
, its statistical information:
$$\Delta \underline{\mathbb{L}}(\tilde{\eta}, M_{\tilde{\eta}}) = \underline{L}(\pi) - \mathbb{E}_{\mathsf{X} \sim M_{\tilde{\eta}}}[\underline{L}(\tilde{\eta}(\mathsf{X}))]$$

Theorem: for any calibrated $\tilde{\eta}$ and any strictly proper symmetric and differentiable loss ℓ

$$\mathbb{I}_f(\mathrm{P},\mathrm{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathrm{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathrm{N}}[f^\star \circ \tilde{h}(\mathsf{X})] \right\} \\ \mathbb{I}_{f^\star}(\mathrm{P}_{\tilde{\eta}},\mathrm{N}_{\tilde{\eta}}) = \underbrace{\mathsf{H}}_{\mathsf{Shown for readable}} + \underbrace{\mathsf{G}}_{\mathsf{Shown for readable}} \Delta \underline{\mathbb{L}}(\tilde{\eta},\mathrm{M}_{\tilde{\eta}})$$

 $\overline{\pi})\cdot \chi^2(\mathrm{N}_{\tilde{\eta}}||\mathrm{P}_{\tilde{\eta}}))$

Adversarial and Copycat

chi square

+ if density ratio fct $\ell_{-1}^{\text{\tiny DR}}(\rho) \doteq \ell_{-1}$ $\left(\frac{1}{1+\rho}\right)$ cvx, then ake (w/ **H** + **G**) Tight characterisation

se the IBT by (all equalities), and one loss "to train against them see Research all": the chi square

Measure-based loss, crafted from generator

$$\mathbb{I}_f(\mathbf{P}, \mathbf{N}) \doteq \int f\left(\frac{\mathrm{dP}}{\mathrm{dN}}\right) \mathrm{dN}$$
 f-divergence

"Information of Binary Task"

Not an equality in general

 \rightarrow discriminator hidden in \tilde{h} , seeks to increase

ke (w/ **H** + **G**) se the IBT by

"No" assumption necessary

Our framework

Partial losses ℓ_1, ℓ_{-1} , Bayes posterior η^* & risk \underline{L}

For any calibrated $\tilde{\eta}$, its *statistical information*:

$$\Delta \underline{\mathbb{L}}(ilde{\eta}, \mathrm{M}_{ ilde{\eta}}) = \underline{L}(\pi) - \mathbb{E}_{\mathsf{X} \sim \mathrm{M}_{ ilde{\eta}}}[\underline{L}(ilde{\eta}(\mathsf{X}))]$$

Theorem: for any calibrated $\tilde{\eta}$ and any strictly

$$\mathbb{I}_f(\mathrm{P},\mathrm{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathrm{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathrm{N}}[f^\star \circ \tilde{h}(\mathsf{X})] \right\} \\ = \mathbb{I}_f(\mathrm{P},\mathrm{N}) \geq \sup_{\tilde{h}} \left\{ \mathbb{E}_{\mathrm{P}}[\tilde{h}(\mathsf{X})] - \mathbb{E}_{\mathrm{N}}[f^\star \circ \tilde{h}(\mathsf{X})] \right\} \\ = \mathbb{I}_f(\mathrm{P}_{\tilde{\eta}},\mathrm{N}_{\tilde{\eta}}) = \mathbb{H}_f(\mathrm{P}_{\tilde{\eta}},\mathrm{N}_{\tilde{\eta}}) = \mathbb{H}_f(\mathrm{P}_{\tilde{\eta}},\mathrm{N}_{\tilde{\eta}}) = \mathbb{H}_f(\mathrm{P}$$

+ if density ratio fct $\ell_{-1}^{\text{\tiny DR}}(\rho) \doteq \ell_{-1}\left(\frac{1}{1+\rho}\right)$ cvx, then

Discriminator calibrated

chi square ogle Research Adversarial and Copycat

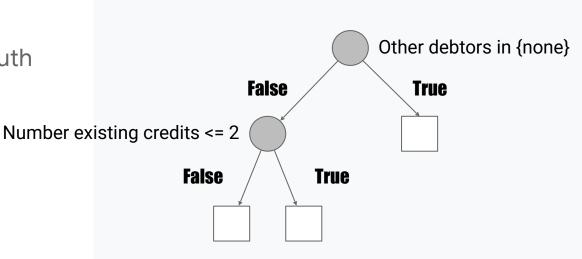
 $\overline{\pi) \cdot \chi^2}(N_{\tilde{\eta}}||P_{\tilde{\eta}})|$

e real (w/ G) amson, JMLR'11

Models

Tree

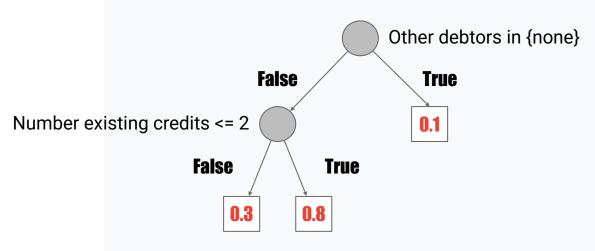
A tree is a binary directed tree whose internal nodes are labeled with a test on an observation variable and outgoing arcs are labeled with truth values. Leaves are blank.



(Labelling from UCI German Credit)

Decision Tree (DT)

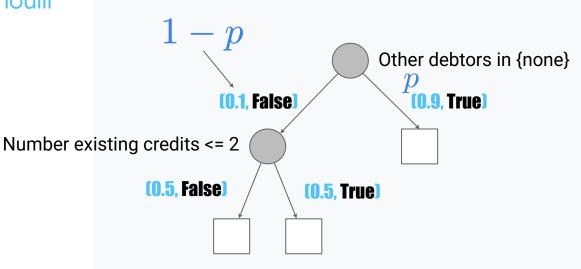
A *decision tree h* is a tree in which leaves are labeled by values in [0,1]



(Labelling from UCI German Credit)

Generative Tree (GT)

A generative tree G is a tree in which outgoing arcs are labeled by Bernoulli trials B(p).



(Labelling from UCI German Credit)

Key routines

For a decision tree **h**: for a given observation $x\in \mathfrak{X}$, return the leaf $\lambda(x)$ whose path in the tree is satisfied by x

For a generative tree G: sample a path (wrt "Bernoullis") and sample uniformly in the corresponding *full* domain of the leaf λ reached Other debtors in {none} {none} **False (0.9**, True) Number existing credits <= 2 Other debtors **(0.5. False)** (0.5. True) (Labelling from UCI German Credit) Google Research Number existing credits (+additional feat.) Nock & Guillame-Bert — Generative Trees: Adversarial and Copycat

Key routines

For a decision tree **h**: for a given observation $x\in \mathfrak{X}$, return the leaf $\lambda(x)$ whose path in the tree is satisfied by x

For a generative tree G: sample a path (wrt "Bernoullis") and sample uniformly in the corresponding *full* domain of the leaf λ reached Other debtors in {none} {none} (0.9, True) **False** Number existing credits <= 2 Other debtors Note: as is, imposes a bounded domain **(0.5. False)** ~ok considering DTs & tabular data + tricks otherwise (e.g. Box-Muller transform Number existing credits (+additional feat.) Nock & Guilla Generative Trees: Adversarial and Copycat

Additional conveniences of generative trees

- → For any observation, *local density* computable in O(depth(G))
- → If missing values, likelihood | observed values & generator G available in O(size(G)) 💉
- → XAI / fairness: "as easy" to interpret as a decision tree
- Easily trainable from data with missing values

 Other debtors in {none}

 Other debtors in {none}

 Number existing credits <=2Other debtors in {none}

 Other debtors in {none}

Other debtors = guarantor, Number existing credits = 1, ...

Other debtors = ?, Number existing credits = 3, ...

Algorithms

Adversarial

→ GAN-style (for "vs" training)

 \rightarrow simple (leaf \rightarrow feature \rightarrow split \rightarrow p in B(p) \rightarrow repeat)

Boosting compliance in generative framework:

→ a weak generative assumption = non total independence between data generation (G) and classification (h)

→ most "expensive" computational bit = the computation of Bernoulli p's

→ geometric convergence of the chi square

$$\chi^2\left(\mathrm{N}_{\tilde{\mathfrak{\eta}}}^{\scriptscriptstyle{\mathrm{new}}}||\mathrm{P}_{\tilde{\mathfrak{\eta}}}\right) \leq \frac{1}{1+Q} \cdot \chi^2\left(\mathrm{N}_{\tilde{\mathfrak{\eta}}}^{\scriptscriptstyle{\mathrm{old}}}||\mathrm{P}_{\tilde{\mathfrak{\eta}}}\right) \\ \uparrow \\ \text{(details in paper)}$$

Google Research

Adversarial

- → GAN-style (for "vs" training)
- \hookrightarrow simple (leaf \rightarrow feature \rightarrow split \rightarrow p in B(p) \rightarrow repeat)

Boosting compliance in generative framework:

→ a weak generative assumption = non total independence between data generation (G) and

- classification (h)
- → most "expensive" computational bit = the computation of Bernoulli p's
- → geometric convergence of the chi square

$$\chi^2 \left(\mathbf{N}_{\tilde{\mathfrak{\eta}}}^{\text{new}} || \mathbf{P}_{\tilde{\mathfrak{\eta}}} \right) \le \frac{1}{1+Q} \cdot \chi^2 \left(\mathbf{N}_{\tilde{\mathfrak{\eta}}}^{\text{old}} || \mathbf{P}_{\tilde{\mathfrak{\eta}}} \right)$$

Copycat

→ Powerful boosting DT induction algorithms for discriminator **h**. Can we rely on them to train **G**?

Adversarial

Copycat

→ GAN-style (for "vs" training)

 \rightarrow simple (leaf \rightarrow feature \rightarrow split \rightarrow p in $B(p)\rightarrow$ repeat)

Boosting compliance in generative framework:

→ a weak generative assumption = non total independence between data generation (G) and classification (h)

→ most "expensive" computational bit = the computation of Bernoulli p's

→ geometric convergence of the chi square

$$\chi^{2}\left(N_{\tilde{\eta}}^{\text{new}}||P_{\tilde{\eta}}\right) \leq \frac{1}{1+Q} \cdot \chi^{2}\left(N_{\tilde{\eta}}^{\text{old}}||P_{\tilde{\eta}}\right)$$

discriminator **h**. Can we rely on them to train **G**?

Train **G** at "0" additional cost & with guarantees

→ Powerful boosting DT induction algorithms for

→ G copies h's tree at induction time & completes it (p) for hardest current generator

→ GT G and DT h share a tree (graph)

→ G = balanced distribution of the weak learning assumption in Kearns & Mansour, STOC'96.

→ trivial computations for **G** + geometric convergence in density ratio loss *for free* from boosting

Google Research

(details in paper)

Experiments

Summary

Experiments carried out with Copycat training (fast, simple, little hyperparameter tuning required, ...), using Kearns and Mansour's optimal top-down algorithm;

1 classical toy generative problem + 4 more experiments against SOTA

- → Toy: 2D heatmaps of densities (vs CTGAN)
- → Missing data imputation: predict missing values in a dataset (vs MICE)
- → Gen-discrim: discriminate between fake and real examples (vs CTGAN)
- → Train-gen (supervised data): train model over fake data, test over real (vs CTGAN)
- → Gen-aug (supervised data): augment real with generated + Train-gen (vs CTGAN)

(details in paper)

Google Research

CTGAN: Xu, Skoularidou, Cuesta-Infante & Veeramachaneni, NeurIPS'19 MICE: van Buuren, "Flexible imputation of missing data", Chapman & Hall / CRC, 2018


```
[#1:root]
|-[0.0489, [ lng (CONTINUOUS) in [-76.8665, -72.7167]; |-1|-1| ] ]--[#2]
  |-[0.0366, [ search vehicle (NOMINAL) in {TRUE}; |-1|-1| ] ]--[#100]
    |-[0.1212, [lat (CONTINUOUS)]] in [40.7067, 41.7329]; |-1|-1| | ]--[#3010 (sampling)]
   -[0.8788, [lat (CONTINUOUS)] in [41.7329, 42.3426]; |-1|-1| ] ]--[#3011]
      |-[0.8276, [ lat (CONTINUOUS) in [41.7329, 41.8060]; |-1|-1| ] ]--[#3338]
        |-[0.9500, [ raw subject race code (NOMINAL) in {W, B}; <math>|-1|-1| ] ]--[\#4184]
           |-[0.2632, [reason for stop (NOMINAL)]] in {TrafficControlSignal, Other}; |-1|-1| |-[#4380 (sampling)]
           \-[0.7368, [ reason for stop (NOMINAL) in {StopSign, DefectiveLights, CellPhone, SuspendedLicense, Registration
             |-[0.5000, [district (NOMINAL)]] in {BARRYSQUARE, NORTHMEADOWS}; |-1|-1| | |-[#5788]
             |-[0.4286, [subject age (INTEGER) in {14, 15, ..., 29}; |-1|-1|] ]--[#9118 (sampling)]
             \-[0.5714, [ subject age (INTEGER) in \{30, 31, \ldots, 94\}; |-1|-1| ] |--[#9119 (sampling)]
            \-[0.5000, [ district (NOMINAL) in {SOUTHWEST, ASYLUMHILL, PARKVILLE, FROGHOLLOW, BEHINDTHEROCKS, SOUTHGREEN,
        | -[0.0500, [ raw subject race code (NOMINAL) in {A, I}; |-1|-1| ] |--[#4185 (sampling)]
       \-[0.1667, [warning issued (NOMINAL) in \{TRUE\}; |-1|-1| ] ]--[#3757 (sampling)]
     \-[0.1724, [lat (CONTINUOUS) in [41.8060, 42.3426]; |-1|-1| ] ]--[\#_{2330} (compline
 \-[0.9634, [ search vehicle (NOMINAL) in {FALSE}; |-1|-1| ] ]--[#101]
                                                                            11 disparities in density young vs not-young
    -[0.0265, [raw search authorization code (NOMINAL) in {C, I}; <math>|-1|-1
                                                                            on "car/driver based search" in specific area
     |-[0.0870, [lat (CONTINUOUS)]] in [40.7067, 41.6730]; |-1|-1| |--[#]
     \-[0.9130, [ lat (CONTINUOUS) in [41.6730, 42.3426]; |-1|-1| ] ]--[\#\frac{1}{4929}
```

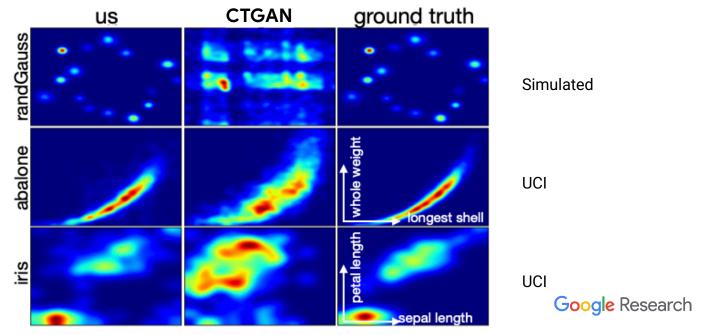
Example of generative tree learned on Stanford Open Policing / Hartford (more examples in paper)

Google Research

Toy 2D heat maps

→ Setup: generate data, compare with ground truth (10 000 nodes GT, 1K epoch CTGANs)

→Some results:

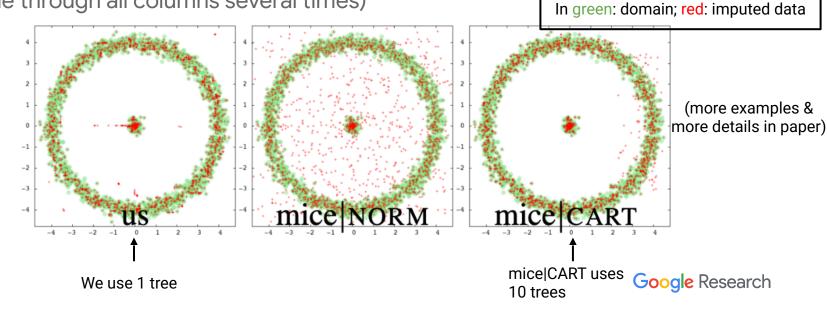


Nock & Guillame-Bert — Generative Trees: Adversarial and Copycat

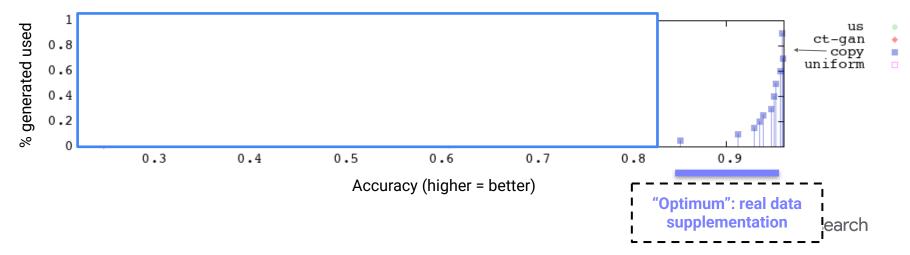
Missing Data Imputation

Arr Summary: synthetic data, remove q% features (Missing Completely At Random), impute Arr W GT vs SOTA = mice (CART: use decision trees to predict missing in one column given the others, cycle through all columns several times)

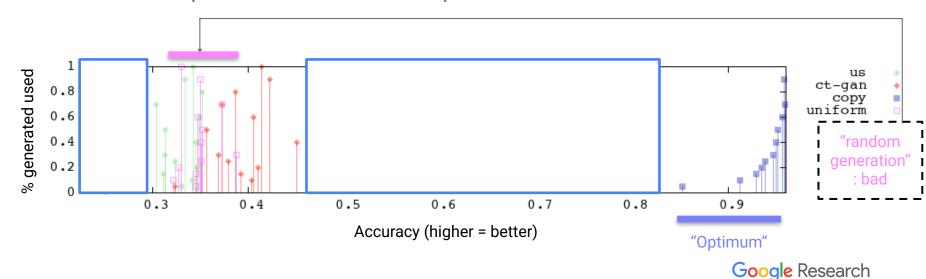
In green: domain: red: imputed data

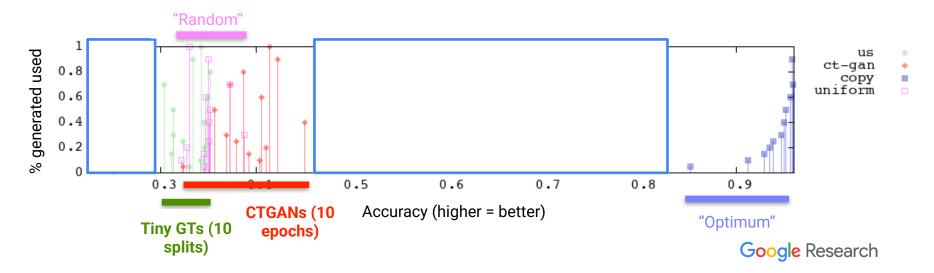


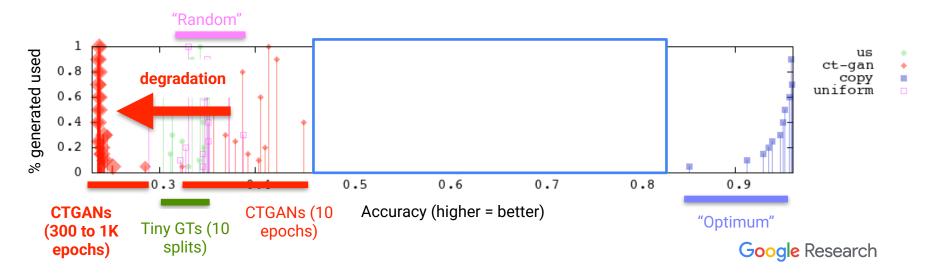
→ **Summary**: use part of real data to train generator, supplement remaining training data with varying % of generated data, train supervised classifier for the task, evaluate accuracy on test data — example of UCI DNA, 181 binary features

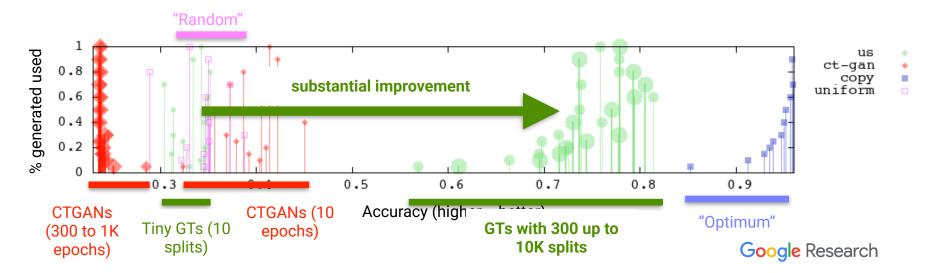


Nock & Guillame-Bert — Generative Trees: Adversarial and Copycat

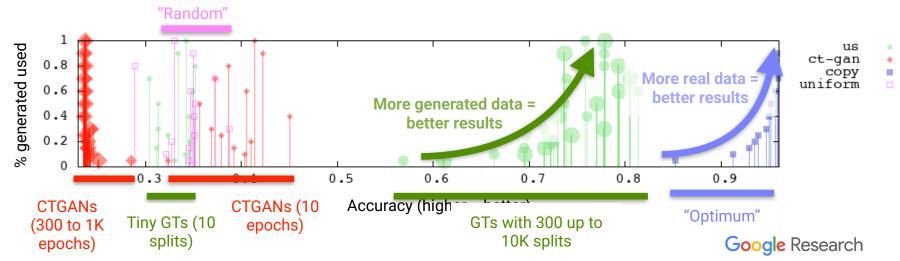








→ **Summary**: use part of real data to train generator, supplement remaining training data with varying % of generated data, train supervised classifier for the task, evaluate accuracy on test data — example of UCI DNA, 181 binary features



→See paper for more results

Nock & Guillame-Bert — Generative Trees: Adversarial and Copycat

Conclusion / future work

Our contributions

- how tight formulation of the GAN losses from the supervised side (properness) if discriminator calibrated, gives the chi square as a "default" generator training loss
- → new generative models & adversarial training w/ boosting compliant convergence
- → new *cheap* training for generative models (*copycat*) + "boosting for free" convergence

Future work includes

- → XAI / fairness: constrained induction of generative models
- → privacy
- → lots of formal questions (generalisation, pruning generators, ensembles of GTs, etc.)

Google Research

Thank you!

{richardnock,gbm}@google.com

