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Machine Learning for People

* ML has been increasingly used to help make decisions about people
* College admission, Hiring, Lending, ...
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Decision ruIe

* ML is vulnerable to strategic manipulation
* ML can be biased against certain social groups

How to make
accurate and fair
decisions?
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Fair machine learning
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Fairness constraint

Demographic parity: equal positive rate
Equal Opportunity: equal true positive rate
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,1’_ Manipulated data A(x)
Cost c(x,4(x))

max f (A(x)) — c(x, A(x))
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Existing Work

Fair machine learning
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min Loss
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s.t, ¢(ea)= ¢(am)
Fairness constraint

Demographic parity: equal positive rate
Equal Opportunity: equal true positive rate

c%o

Strategic classification

» Stackelberg game formulation

Hardt et al., 2016a; Dong et al. 2018; Milli et al.,
2019; Hu et al., 2019; Braverman & Garg, 2020

Classifier f
max Pr[h(x) = f(A(x))]

Initial data x

’1’_ Manipulated data A(x)

Cost c(x,4(x))
max f (A(x)) — c(x, A(x))
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EXA

This paper:

* A new Stackelberg game formulation that admits
* uncertain manipulation outcomes
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This paper:

* A new Stackelberg game formulation that admits
* uncertain manipulation outcomes

* How strategic manipulation and fairness intervention impact each other?
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Strategic Fairness
Manipulation ~ Constraint
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O & O * Sensitive attribute S € {a, b} (race/gender)
omO &m - e Feature X (exam score)
Unqualified = m/,/"/  Qualification Y € {0,1} (ability to graduate)
_________ 6 N A-‘ * Decision D € {0,1} (get admitted or not)
Qualified -A & Al * Decision-maker’s policy s(x) = Ppxs(1]x,s)

Manipulation action M € {0,1} (whether to hire
someone else to take the exam or not)

* Manipulation doesn’t affect qualification but results in a
better feature distribution

* Manipulation cost C; = 0 (cost of hiring someone)

School
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* For an individual in group s with qualification y, given a policy i, he/she manipulates
with probability:



Model: individual best response

Which action

Manipulate or not? o .
maximizes my utility?

J
YES - NO
Ppiyms(1ly, 1,5) — Cs Ppiyms(1ly, 0,s)
Manipulate (M = 1) if | Benefit with manipulation — cost = | Benefit without manipulation

* For an individual in group s with qualification y, given a policy i, he/she manipulates
with probability:

Pr (Cs < Ppyyms(1ly, 1,5) — Ppyms(1]y, 0, S))
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* False-positive penalty R(0,1) = —u_
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Model: decision-maker’s optimal policies
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Impose fairness

Strategic policy Non-strategic policy constraint or not?
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policy policy

* Policy (m,, ) that maximizes the expected utility E[R(Y, D)]
* True-positive benefit R(1,1) = u,
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Results

* Characterize the equilibrium strategies of individuals & decision-maker

Strategic Vs Strategic
fair policy " | unconstrained
policy

* Impact of decision-maker’s anticipation of strategic manipulation
* Conditions when strategic policy over/under accepts individuals
» Conditions when strategic policy worsens/mitigates unfairness?

* Impact of fairness constraint on non-strategic policies
* Non-strategic decision-maker may benefit from fairness constraints

* Impact of fairness constraint on manipulative behavior
* Fairness constraints can serve as incentives/disincentives for manipulation
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