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Scales of physical modelling

Different physical scales have to be considered, when modelling an application scenario
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The Boltzmann moment equation

The moment hierachy of the Boltzmann equation is a powerful tool for kinetic systems!

Boltzmann moment system

∂tu +∇ · ⟨vfm⟩ = ⟨mQ(f )⟩

Two variables for one equation!

u(t, x) ∈ RN moment vector

f (t, x , v) ∈ R+ kinetic density

This system is not closed! Need to find closure for the advection term ⟨vf (t, x , v)m(v)⟩.
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Moment closures

Truncation closure, i.e. linear reconstruction in the moment basis

fu(t, x , v) = u(t, x) · m(v) (1)

Cheap to compute, but solution can be negative
General neural network approximations of f [HMME19, HCCR21]

fu(t, x , v) = Nθ(u(t, x),m(v)) (2)

Many approaches possible, but hard to preserve the systems structure.
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Minimal entropy closure

Minimal entropy closure is a nonlinear reconstruction in the moment basis

fu(v) = η′∗(αu · m(v)) (3)

where αu are the Lagrange multipliers of the convex

Dual minimal entropy closure problem

αu = argminα∈RN {h(α)} (4)

h(αu) = ⟨η∗(αu · m(v))⟩ − αu · u convex (5)

where η(f ) is the entropy density. The problem is convex, but ill-conditioned and hard to solve!

Steffen Schotthöfer, Tianbai Xiao, Martin Frank, Cory D. Hauck 5 / 12



Entropy closures are good

Entropy functional h(α;u) is convex.
This implies structure preservation!

Hyperbolicity of the moment system (simulation stability)

Entropy decay, H-Theorem (physical property)

Local conservation laws (Mass, Energy conservation)

Positivity of solution

Galilean invariance

But they are very expensive! Over 90% of the simulation time needed!
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Structure preserving neural networks

Substitute optimization problem by trained neural network Nθ

Accelerate the simulation

Preserve the good structure of the minimal entropy closure

Main Idea:

Preserve convexity of the entropy functional h = ⟨η∗(αu · m(v))⟩ − αu · u

Do not train Nθ on closure directly, but on u 7→ h(u), obtain αu = h′(u)

Tools:

Use an input convex neural network [AXK17]

Or penalize non-monontonicity of the network derivative
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Training data generation

Idea 1:Sample data by running simulations
(end-to-end training)

Unclear training data distribution
Very problem specific
Expensive simulation needed

Idea 2: Use the intricate problem structure to generate
data

Gives strong control over data distribution
Allows error analysis
Much faster
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Simulation of a nuclear reactor

We achieve the same accuracy as the benchmark simulation!

Cross section comparison
Benchmark solver Network based solver
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Computational Cost

Over 87% of computational time saved!

Makes entropy closure methods fast and physically accurate!

compute cores Newton [s] Nθ [s] Ratio [%]
4 757.88 80.81 89.33

12 258.64 33.60 87.01
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Thank you for your attention!

You have questions or want to stay in touch?
Let me know and write me an email!

steffen.schotthoefer@kit.edu

(link to codebase)
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