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Scales of physical modelling

Karlsruhe Institute of Technology

Different physical scales have to be considered, when modelling an application scenario

| Newton’s laws of motion: m;X; = F;(t, x, X) ‘

\L Large number of particles \L

| Kinetic equations: 0,f + vV, f = S(f) ‘

\l, Many collisions \L

Macroscopic equations: 9;p+ V,g(p) = Q(p) |
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The Boltzmann moment equation ﬂ("‘

The moment hierachy of the Boltzmann equation is a powerful tool for kinetic systems!

Boltzmann moment system

B+ V - (vim) = (mQ(f))

Two variables for one equation!
® u(t, x) € RN moment vector
a f(t,x,v) € Ry kinetic density

This system is not closed! Need to find closure for the advection term (vf(t, x, v)m(v)).
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Moment closures
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m Truncation closure, i.e. linear reconstruction in the moment basis
fu(t,x,v) = u(t,x) - m(v) (1)

Cheap to compute, but solution can be negative

Steffen Schotthofer, Tianbai Xiao, Martin Frank, Cory D. Hauck 4/12



Moment closures ﬂ("‘

m Truncation closure, i.e. linear reconstruction in the moment basis
fu(t,x,v) = u(t,x) - m(v) (1)

Cheap to compute, but solution can be negative
a General neural network approximations of f [HMME19, HCCR21]

fu(l’,X, V) :NG(u(t7X)7m(V)) (2)

Many approaches possible, but hard to preserve the systems structure.
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Minimal entropy closure AT
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Minimal entropy closure is a nonlinear reconstruction in the moment basis
fu(v) = ni(aw - m(v)) (3

where o, are the Lagrange multipliers of the convex

Dual minimal entropy closure problem

ay = argmin, cgn {h(a)} (4)
h(aw) = (Me(ay - m(v))) —ay -u  convex (5)

where 7)(f) is the entropy density. The problem is convex, but ill-conditioned and hard to solve!
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Entropy closures are good

Entropy functional h(«.u) is convex.
This implies structure preservation!

Hyperbolicity of the moment system (simulation stability)
a Entropy decay, H-Theorem (physical property)

m Local conservation laws (Mass, Energy conservation)

a Positivity of solution
-

Galilean invariance
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Hyperbolicity of the moment system (simulation stability)
a Entropy decay, H-Theorem (physical property)

m Local conservation laws (Mass, Energy conservation)

a Positivity of solution
-

Galilean invariance

T
But they are very expensive! Over 90% of the simulation time needed!
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Structure preserving neural networks

m Substitute optimization problem by trained neural network Ny
m Accelerate the simulation
m Preserve the good structure of the minimal entropy closure
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Structure preserving neural networks ﬂ("'

Substitute optimization problem by trained neural network Ny
Accelerate the simulation

Preserve the good structure of the minimal entropy closure

Main ldea:

Preserve convexity of the entropy functional h = (n.(ay - m(v))) — ay - u

Do not train Ay on closure directly, but on u — h(u), obtain a, = K (u)
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Structure preserving neural networks ﬂ("'

Substitute optimization problem by trained neural network Ny
Accelerate the simulation

Preserve the good structure of the minimal entropy closure

Main ldea:

Preserve convexity of the entropy functional h = (n.(ay - m(v))) — ay - u

Do not train Ay on closure directly, but on u — h(u), obtain a, = K (u)

Tools:

Use an input convex neural network [AXK17]

Or penalize non-monontonicity of the network derivative
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Training data generation
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a ldea 1:Sample data by running simulations
(end-to-end training)
a Unclear training data distribution
a Very problem specific
a Expensive simulation needed

.0 =
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Training data generation

a ldea 1:Sample data by running simulations
(end-to-end training)
a Unclear training data distribution
a Very problem specific
a Expensive simulation needed

a Idea 2: Use the intricate problem structure to generate
data
a Gives strong control over data distribution
a Allows error analysis
& Much faster

Steffen Schotthéfer, Tianbai Xiao, Martin Frank, Cory D. Hauck

Karlsruhe Institute of Technology

0 -
-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
uj

8/12



Simulation of a nuclear reactor
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scalar flux

Cross section comparison

Benchmark solver Network based solver
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Computational Cost ﬂ("

a Over 87% of computational time saved!
a Makes entropy closure methods fast and physically accurate!

compute cores  Newton[s] MNy[s] Ratio [%]
4 757.88 80.81 89.33
12 258.64 33.60 87.01
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Thank you for your attention! SIT

You have questions or want to stay in touch?
Let me know and write me an email!
steffen.schotthoefer@kit.edu

(link to codebase)
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