

Structure Preserving Neural Networks: A Case Study in the Entropy Closure of the Boltzmann Equation

Steffen Schotthöfer, Tianbai Xiao, Martin Frank, Cory D. Hauck

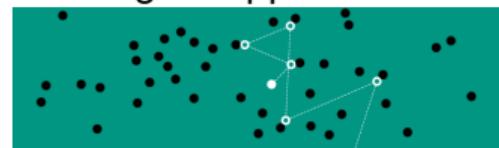
RESEARCH GROUP COMPUTATIONAL SCIENCE & MATHEMATICAL METHODS, KIT KARLSRUHE

Scales of physical modelling

Different physical scales have to be considered, when modelling an application scenario

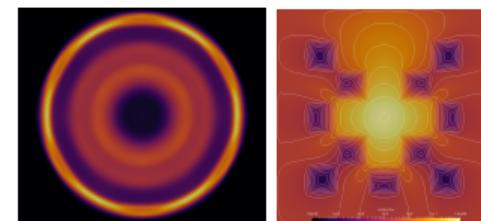
Newton's laws of motion: $m_i \ddot{x}_i = F_i(t, x, \dot{x})$

↓ Large number of particles ↓

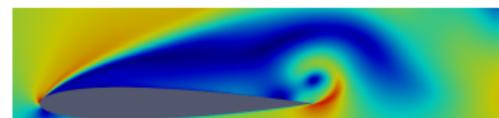


Kinetic equations: $\partial_t f + v \nabla_x f = S(f)$

↓ Many collisions ↓



Macroscopic equations: $\partial_t \rho + \nabla_x g(\rho) = Q(\rho)$



The Boltzmann moment equation

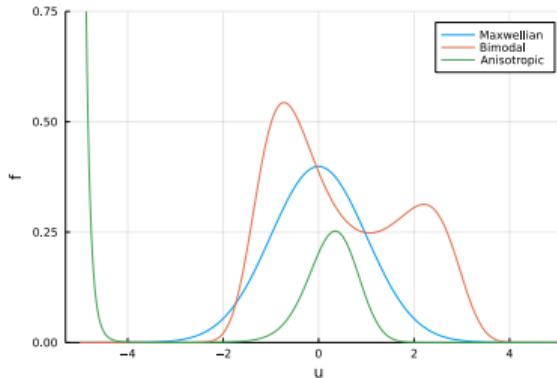
The moment hierarchy of the Boltzmann equation is a powerful tool for kinetic systems!

Boltzmann moment system

$$\partial_t \mathbf{u} + \nabla \cdot \langle v \mathbf{f} \mathbf{m} \rangle = \langle \mathbf{m} Q(f) \rangle$$

Two variables for one equation!

- $u(t, x) \in \mathbb{R}^N$ moment vector
- $f(t, x, v) \in \mathbb{R}_+$ kinetic density



This system is not closed! Need to find closure for the advection term $\langle v f(t, x, v) m(v) \rangle$.

Moment closures

- Truncation closure, i.e. linear reconstruction in the moment basis

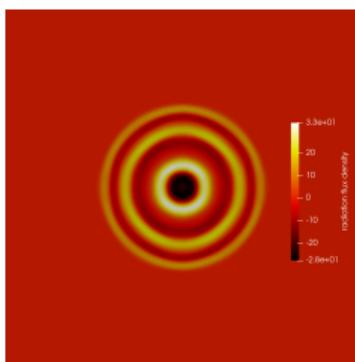
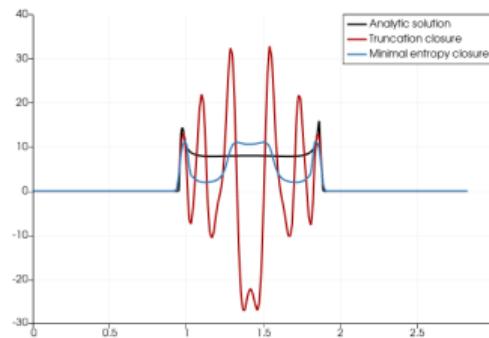
$$f_u(t, x, v) = \mathbf{u}(t, x) \cdot \mathbf{m}(v) \quad (1)$$

Cheap to compute, but solution can be negative

- General neural network approximations of f [HMME19, HCCR21]

$$f_u(t, x, v) = \mathcal{N}_\theta(\mathbf{u}(t, x), \mathbf{m}(v)) \quad (2)$$

Many approaches possible, but hard to preserve the systems structure.



Moment closures

- Truncation closure, i.e. linear reconstruction in the moment basis

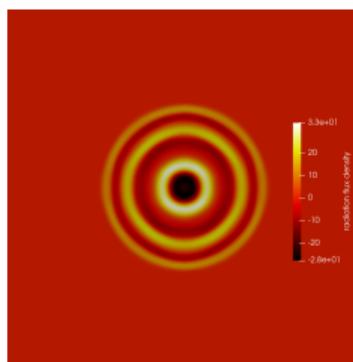
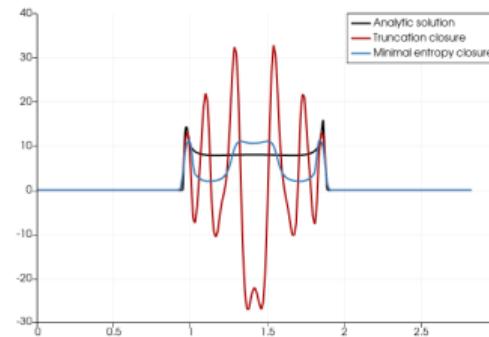
$$f_u(t, x, v) = \mathbf{u}(t, x) \cdot \mathbf{m}(v) \quad (1)$$

Cheap to compute, but solution can be negative

- General neural network approximations of f [HMME19, HCCR21]

$$f_u(t, x, v) = \mathcal{N}_\theta(\mathbf{u}(t, x), \mathbf{m}(v)) \quad (2)$$

Many approaches possible, but hard to preserve the systems structure.



Minimal entropy closure is a nonlinear reconstruction in the moment basis

$$f_u(v) = \eta'_*(\alpha_u \cdot \mathbf{m}(v)) \quad (3)$$

where α_u are the Lagrange multipliers of the convex

Dual minimal entropy closure problem

$$\alpha_u = \operatorname{argmin}_{\alpha \in \mathbb{R}^N} \{h(\alpha)\} \quad (4)$$

$$h(\alpha_u) = \langle \eta_*(\alpha_u \cdot \mathbf{m}(v)) \rangle - \alpha_u \cdot \mathbf{u} \quad \text{convex} \quad (5)$$

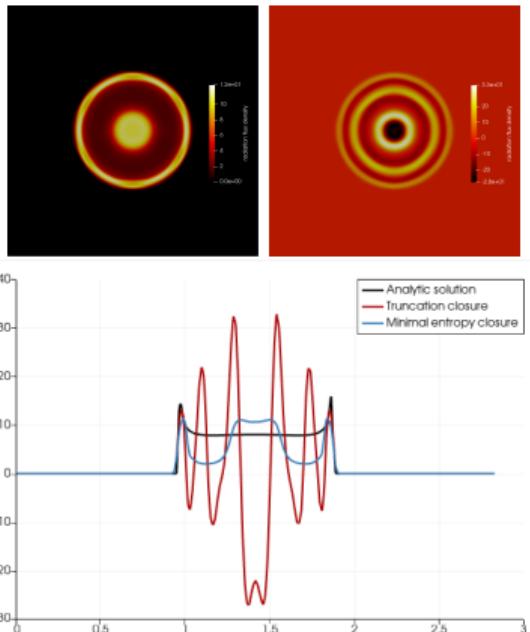
where $\eta(f)$ is the entropy density. The problem is convex, but ill-conditioned and **hard to solve!**

Entropy closures are good

Entropy functional $h(\alpha, u)$ is convex.

This implies structure preservation!

- Hyperbolicity of the moment system (simulation stability)
- Entropy decay, H-Theorem (physical property)
- Local conservation laws (Mass, Energy conservation)
- Positivity of solution
- Galilean invariance



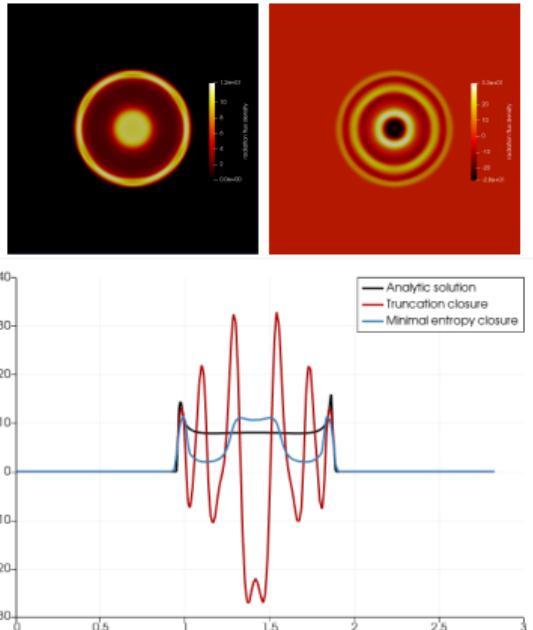
But they are very expensive! Over 90% of the simulation time needed!

Entropy closures are good

Entropy functional $h(\alpha, u)$ is convex.

This implies structure preservation!

- Hyperbolicity of the moment system (simulation stability)
- Entropy decay, H-Theorem (physical property)
- Local conservation laws (Mass, Energy conservation)
- Positivity of solution
- Galilean invariance



But they are very expensive! **Over 90%** of the simulation time needed!

- Substitute optimization problem by trained neural network \mathcal{N}_θ
- Accelerate the simulation
- Preserve the good structure of the minimal entropy closure

Main Idea:

- Preserve convexity of the entropy functional $h = \langle \eta_*(\alpha_u \cdot \mathbf{m}(v)) \rangle - \alpha_u \cdot \mathbf{u}$
- Do not train \mathcal{N}_θ on closure directly, but on $\mathbf{u} \mapsto h(\mathbf{u})$, obtain $\alpha_u = h'(\mathbf{u})$

Tools:

- Use an input convex neural network [AXK17]
- Or penalize non-monotonicity of the network derivative

- Substitute optimization problem by trained neural network \mathcal{N}_θ
- Accelerate the simulation
- Preserve the good structure of the minimal entropy closure

Main Idea:

- Preserve convexity of the entropy functional $h = \langle \eta_*(\alpha_u \cdot \mathbf{m}(v)) \rangle - \alpha_u \cdot \mathbf{u}$
- Do not train \mathcal{N}_θ on closure directly, but on $\mathbf{u} \mapsto h(\mathbf{u})$, obtain $\alpha_u = h'(\mathbf{u})$

Tools:

- Use an input convex neural network [AXK17]
- Or penalize non-monotonicity of the network derivative

Structure preserving neural networks

- Substitute optimization problem by trained neural network \mathcal{N}_θ
- Accelerate the simulation
- Preserve the good structure of the minimal entropy closure

Main Idea:

- Preserve convexity of the entropy functional $h = \langle \eta_*(\alpha_u \cdot \mathbf{m}(v)) \rangle - \alpha_u \cdot \mathbf{u}$
- Do not train \mathcal{N}_θ on closure directly, but on $\mathbf{u} \mapsto h(\mathbf{u})$, obtain $\alpha_u = h'(\mathbf{u})$

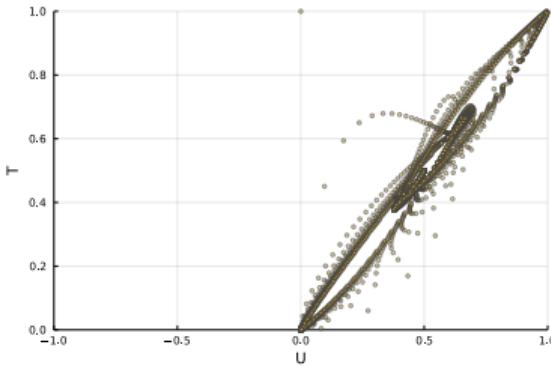
Tools:

- Use an input convex neural network [AXK17]
- Or penalize non-monotonicity of the network derivative

Training data generation

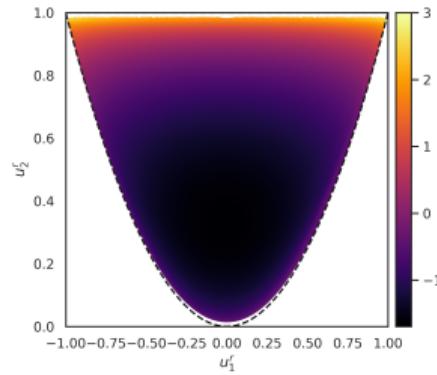
- **Idea 1:** Sample data by running simulations (end-to-end training)

- Unclear training data distribution
- Very problem specific
- Expensive simulation needed



- **Idea 2:** Use the intricate problem structure to generate data

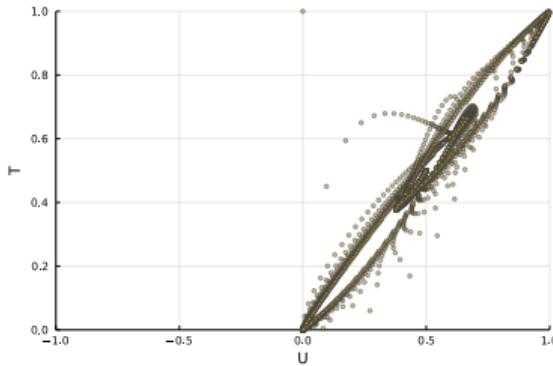
- Gives strong control over data distribution
- Allows error analysis
- Much faster



Training data generation

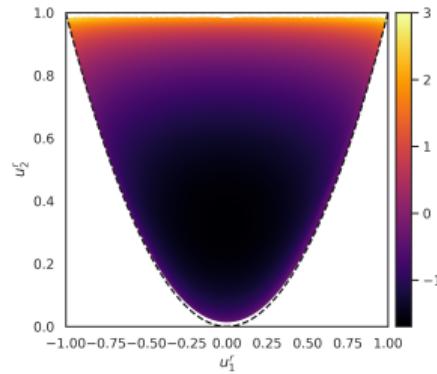
- **Idea 1:** Sample data by running simulations (end-to-end training)

- Unclear training data distribution
- Very problem specific
- Expensive simulation needed



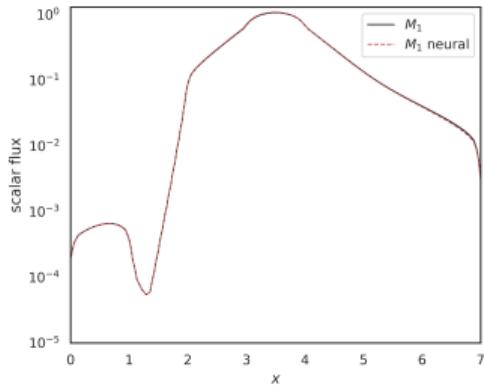
- **Idea 2:** Use the intricate problem structure to generate data

- Gives strong control over data distribution
- Allows error analysis
- Much faster

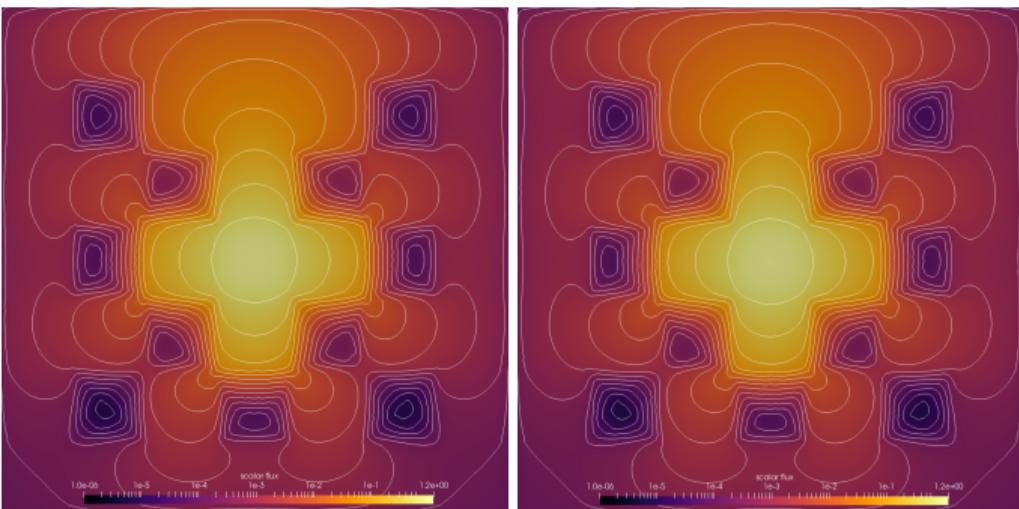


Simulation of a nuclear reactor

- We achieve the same accuracy as the benchmark simulation!



Cross section comparison



Benchmark solver

Network based solver

Computational Cost

- Over 87% of computational time saved!
- Makes entropy closure methods fast **and** physically accurate!

compute cores	Newton [s]	\mathcal{N}_θ [s]	Ratio [%]
4	757.88	80.81	89.33
12	258.64	33.60	87.01

Thank you for your attention!

You have questions or want to stay in touch?

Let me know and write me an email!

steffen.schotthoefer@kit.edu

(link to codebase)

- Brandon Amos, Lei Xu, and J. Zico Kolter, *Input convex neural networks*, Proceedings of the 34th International Conference on Machine Learning (Doina Precup and Yee Whye Teh, eds.), Proceedings of Machine Learning Research, vol. 70, PMLR, 06–11 Aug 2017, pp. 146–155.
- Juntao Huang, Yingda Cheng, Andrew J. Christlieb, and Luke F. Roberts, *Machine learning moment closure models for the radiative transfer equation iii: enforcing hyperbolicity and physical characteristic speeds*, 2021.
- Jiequn Han, Chao Ma, Zheng Ma, and Weinan E, *Uniformly accurate machine learning-based hydrodynamic models for kinetic equations*, Proceedings of the National Academy of Sciences **116** (2019), no. 44, 21983–21991.