For Learning in Symmetric Teams, Local Optima are Global Nash Equilibria

Scott Emmons

International Conference on Machine Learning, 2022

Center for Human-Compatible Artificial Intelligence

In Collaboration with

Caspar Oesterheld

Andrew Critch

Vince Conitzer

Stuart Russell

Motivating Example

Common-payoff game

- All players have same payoffs

Symmetric game structure

- Can swap the taxis

Symmetric strategy profile

- Taxis share source code

Types of Symmetry

How much can one of *N* players improve the common payoff by unilaterally deviating?

- a) No improvement is possible
- b) $O(\sqrt{N})$ improvement
- c) O(N) improvement
- d) $O(N^2)$ improvement

((<u>+</u>))	
鼠	(<u></u>)

How much can one of *N* players improve the common payoff by unilaterally deviating?

- a) No improvement is possible
- b) O(√N) improvement
- e) O(N) improvement
- d) O(N²) improvement

	:::
鼠	((<u>+</u>))

	Home	Work
Home	1	2
Work	2	1

	
鼠	

Local → Global Guarantee

In Plain English

Locally optimal symmetric collaboration is a global Nash equilibrium.

Theorem

Let G be a normal-form (or extensive-form) game with common payoff. Then any *locally* optimal P-invariant strategy profile is a *global* Nash equilibrium.

Note: \mathbf{P} -invariance is a group-theoretic notion of symmetry generalizing:

- Anonymous games
- Transitive games
- Totally symmetric games

Implications of Theorem

Team Theory

No individual can innovate from a symmetric local optimum to improve the common payoff.

Multi-agent Reinforcement Learning

Iterated best response can't improve a local symmetric optimum.

(Adversarial) Team Games

Result extends to arbitrary number of teams.

Robustness of Result

The result degrades smoothly, giving an ε -Nash equilibrium for:

Approximate Solutions

Payoff Perturbations

	Home	Work
Home	1+ε, 1-ε	2-ε, 2-ε
Work	2+ε, 2+ε	1-ε, 1+ε

(In)stability to Joint (Possibly-Asymmetric) Deviation

Theorem (for non-degenerate games)

A local symmetric optimum is locally optimal among possibly-asymmetric strategy profiles if and only if it is deterministic.

Experimentally, up to 60% are mixed, i.e., *unstable*!

Conclusion

We give conditions for stability and instability

Future Work

- Behavioral strategies
- Continuous actions & function approximation
- Sequential decision making benchmarks

