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Overview: Contributions

1 Artefact debiasing:VVe mitigate the bias introduced
by surgical markings and rulers when classifying skin
lesion images.

1 Instrument debiasing for domain generalisation:
We demonstrate the generalisation benefits of
unlearning information relating to the instruments used
to capture skin lesion images.



Motivation: Surgical Marking Bias

JAMA Dermatology | Original Investigation

Association Between Surgical Skin Markings in Dermoscopic
Images and Diagnostic Performance of a Deep Learning
Convolutional Neural Network for Melanoma Recognition

J In this study, the CNN scored an AUC of
0.969 on images without surgical markings.

. When tested on the same lesions with

Julia K. Winkler, MD; Christine Fink, MD; Ferdinand Toberer, MD; Alexander Enk, MD; Teresa Deinlein, MD; Q o
Rainer Hofmann-Wellenhof, MD; Luc Thomas, MD; Aimilios Lallas, MD; Andreas Blum, MD; su rglcal ma‘rkl ngs Present’ the C N N Scored
Wilhelm Stolz, MD; Holger A. Haenssle, MD an AUC Of 0 922
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CONCLUSIONS AND RELEVANCE This study’s findings suggest that skin markings significantly
interfered with the CNN's correct diagnosis of nevi by increasing the melanoma probability
scores and consequently the false-positive rate. A predominance of skin markings in
melanoma training images may have induced the CNN's association of markings with a
melanoma diagnosis. Accordingly, these findings suggest that skin markings should be
avoided in dermoscopic images intended for analysis by a CNN.

(. We also recreated this performance drop
in our experiments, see table below:

Plainimages  Images w/ markings

0.990 0.902




Motivation: Ruler Bias

Association between different scale bars in dermoscopic
images and diagnostic performance of a market-approved U In this study, the CNN scored an AUC of

deep learning convolutional neural network for 0.953 on images without rulers.
melanoma recognitjon (1 When tested on the same lesions with
Julia K. Winkler “, Katharina Sies “, Christine Fink “, Ferdinand Toberer °, rulers present (3Gen-Dermlitel), the CNN
Alexander Enk #, Mohamed S. Abassi °, Tobias Fuchs °, scored an AUC of 0.774.

Holger A. Haenssle “*

Conclusions: Superimposed scale bars in dermoscopic images may impair the CNN’s diag-

nostic accuracy, mostly by increasing the rate of the false-positive diagnoses. We recommend We also recreated this P erformance drop in
avoiding scale bars in images intended for CNN analysis unless specific measures counteract-

ing effects are implemented. our experiments, see table below:

Plain images Images w/ rulers
0.999 0.831




Motivation: Artefact Bias

(1 Surgical markings and rulers introduce bias that causes
performance irregularities in melanoma classification models [1,2].

1 Current suggestion is that dermatologists stop using these visual
aids, but this is not realistic.

1 Cropping and segmentation are expensive and ineffective.

We investigate an automated solution to mitigating these
biases using leading debiasing techniques
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Motivation: Instrument Bias

Domain bias is caused by differences in the instrument type
(dermoscopic/clinical) or instrument model used to capture lesion images.

Dermoscopic Clinical

> = § © &

Atlas The Atlas dataset has 1000 pairs of clinical and
Dermoscopic  Clinical dermoscopic images of the same lesion. Since the
model is trained on dermoscopic data it doesn’t

generalise well to the clinical images. Similar

AUC scores of melanoma classification model tested on lesion images  results have been shown in previous studies [5] .
taken with different instruments. Trained using dermoscopic images.

0.819 0.616

We investigate removing this domain bias towards domain
generalisation, using leading debiasing techniques.



Methods: Learning Not To Learn (LNTL) [3]

Auxiliary classifier head to identify and remove a labelled bias:

1 Auxiliary regularisation loss minimises mutual information between the feature
embedding and the targeted bias.

(d Gradient reversal applied to auxiliary classification loss during backpropagation as
additional bias removal tool.

(1 Goal is that the primary classification head learns to classify using a feature
embedding that is independent of the target bias.
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Methods: Turning A Blind Eye (TABE) [4]

Auxiliary classifier head to identify and remove a labelled bias:

(1 Auxiliary confusion loss finds cross entropy between output predicted bias and
uniform distribution towards finding a bias invariant feature representation.

(1 Gradient reversal can also be applied to the auxiliary classification loss in TABE for
additional bias removal. We refer to this configuration as CLGR.
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Methods: Instrument Bias Labels

Since we don’t have labels for the instrument used to capture
the images in the training set (ISIC competition data), we use
the image size as a proxy.
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image size



Experimental Results: Artefact Bias Removal

(1 Models are tested on the same lesions with and without artefacts present.

0 Debiasing methods seem to help mitigate both surgical marking and
ruler bias.

Surgical marking experiment Ruler experiment
1.00- —=— 1.00- -
1
0.95- 0.95-
model I model
O . baseline . baseline
2 0.90- B Nt 30090 B LNt
|| TABE | | TABE
CLGR CLGR
0.85- 0.85-
0.80- 0.80-
plain marked plain rulers

test set test set



Experimental Results: Instrument Bias Removal

Using Turning a Blind Eye [4] to unlearn instrument information leads to
improved generalisation, with improved performance (compared to the baseline)
across several dermoscopic and clinical test sets. Scores are AUC.

Experiment

AtlasD AtlasC ASANC

MClassD MClassC

Dermatologists e 0.671 0.769
Baseline 0.819 0.616 0.768 0.853 0.744
LNTL 0.776 0.597 0.746 0.821 0.778
TABE 0.817 0.674 0.857 0.908 0.768
CLGR 0.784 0.650 0.785 0.818 0.807
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