

Online Learning and Pricing

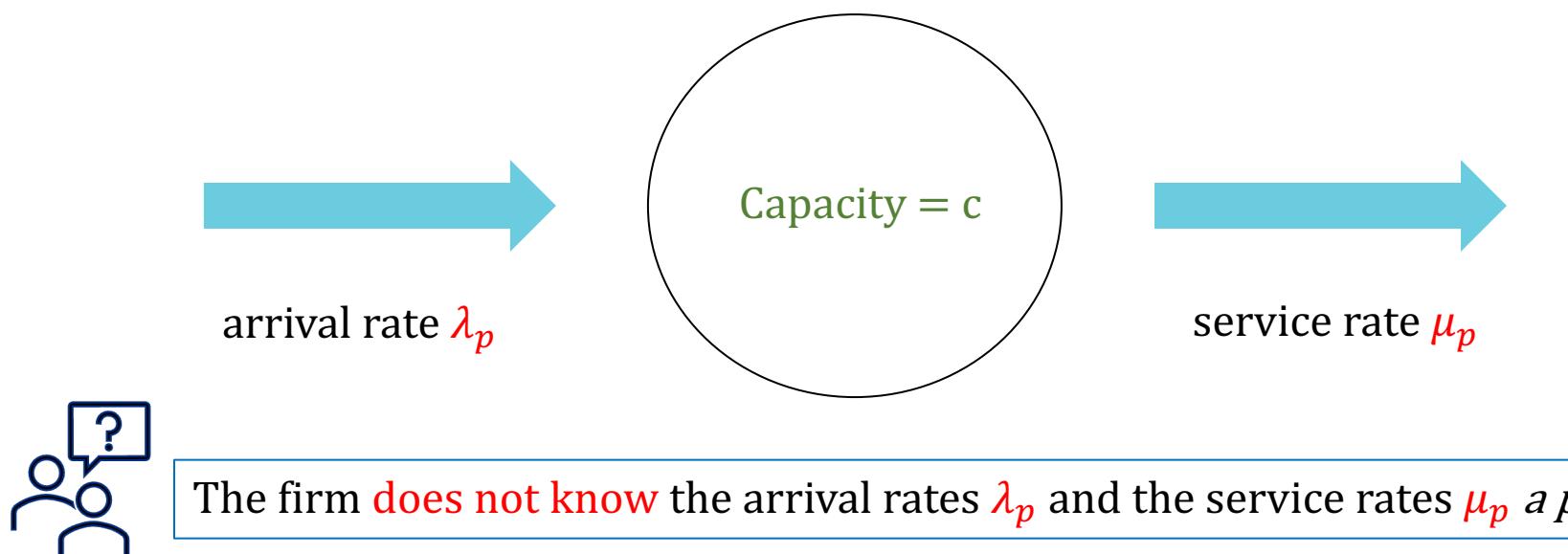
with Reusable Resources:

Linear Bandits with Sub-Exponential Rewards

Huiwen Jia, Cong Shi, Siqian Shen

Problem Modelling: Online Learning and Pricing with Reusable Resource

- A firm is endowed with a finite capacity of c reusable products
- In each period t , the firm posts a price $p \in [p_L, p_U]$
- Customers arrive according to a Poisson process with rate λ_p and they are served on a first-arrive-first-serve basis by occupying one unit of resource following an exponential distribution with rate μ_p
- Goal: maximizing revenue



Problem Modelling: Linear Bandits with Sub-Exponential Rewards

Price $p \rightarrow$ Feature Vector $\mathbf{x}_p \in \mathbb{R}^{d_f}$

Assume linear mappings: $\frac{1}{\lambda_p} = \theta_\lambda^T \mathbf{x}_p$, $\frac{1}{\mu_p} = \theta_\mu^T \mathbf{x}_p$

Offer price:

p_1

p_2

...

p_N

Arrival time intervals

- Count: $n_m(p)$
- Observation: $\hat{d}_i(p)$, $i = 1, \dots, n_m(p)$
- Empirical Mean: $\bar{d}_p = \sum_{i=1}^{n_m(p)} \hat{d}_i(p) / n_m(p)$

• \bar{d}_p follows an Erlang distribution $\text{Erlang}(n_m(p), n_m(p)\lambda_p)$

• $\bar{d}_p \sim \text{SE}\left(\frac{4}{n_m(p)\lambda_p^2}, \frac{2}{n_m(p)\lambda_p}\right)$

• $\bar{d}_p = \theta_\lambda^T \mathbf{x}_p + \epsilon_p$ and $\epsilon_p \sim \text{SE}\left(\frac{4}{n_m(p)\lambda_p^2}, \frac{2}{n_m(p)\lambda_p}\right)$

Problem Modelling: Linear Bandits with Sub-Exponential Rewards

Price $p \rightarrow$ Feature Vector $\mathbf{x}_p \in \mathbb{R}^{d_f}$

Assume linear mappings: $\frac{1}{\lambda_p} = \theta_\lambda^T \mathbf{x}_p, \frac{1}{\mu_p} = \theta_\mu^T \mathbf{x}_p$

Offer price:

p_1

p_2

...

p_N

Arrival time intervals

- Count: $n_m(p)$
- Observation: $\hat{d}_i(p), i = 1, \dots, n_m(p)$
- Empirical Mean: $\bar{d}_p = \sum_{i=1}^{n_m(p)} \hat{d}_i(p) / n_m(p)$

• \bar{d}_p follows an Erlang distribution $\text{Erlang}(n_m(p), n_m(p)\lambda_p)$

• $\bar{d}_p \sim \text{SE}\left(\frac{4}{n_m(p)\lambda_p^2}, \frac{2}{n_m(p)\lambda_p}\right)$

• $\bar{d}_p = \theta_\lambda^T \mathbf{x}_p + \epsilon_p$ and $\epsilon_p \sim \text{SE}\left(\frac{4}{n_m(p)\lambda_p^2}, \frac{2}{n_m(p)\lambda_p}\right)$

Data

- $\mathbf{X} = [\mathbf{x}_{p_1}, \mathbf{x}_{p_2}, \dots, \mathbf{x}_{p_N}]^T$: features
- $\mathbf{d} = [\bar{d}_{p_1}, \bar{d}_{p_2}, \dots, \bar{d}_{p_N}]^T$ mean arrival time
- $\hat{\Omega}_\lambda$ with i^{th} element $\frac{\bar{d}_{p_i}^2}{n_m(p_i)}$

Estimate

$$\hat{\theta}_\lambda = (\mathbf{X}^T \hat{\Omega}_\lambda^{-1} \mathbf{X})^{-1} \mathbf{X}^T \hat{\Omega}_\lambda^{-1} \mathbf{d}$$

Proposition 2. Consider N implemented prices with $N \geq d_f$ and $n_m(p) \geq 8 \log(T)$ for any implemented price p . Then, for a new feature vector \mathbf{x}' :

$$\mathbb{P}\left(\frac{|\hat{\theta}_\lambda^T \mathbf{x}' - \theta_\lambda^T \mathbf{x}'|}{\sqrt{\mathbf{x}'^T (\mathbf{X}^T \hat{\Omega}_\lambda^{-1} \mathbf{X})^{-1} \mathbf{x}'}} \geq \sqrt{32 \log(T)}\right) \leq \frac{2}{T^4}.$$

Proposition 3. For price p with a feature vector \mathbf{x} , we have: where

$$\mathbb{P}\left(\left|\frac{\lambda_p}{\mu_p} - \frac{\hat{\theta}_\lambda^T \mathbf{x}}{\hat{\theta}_\lambda^T \mathbf{x}}\right| \leq \frac{\sqrt{32 \log(T)}}{\hat{\theta}_\lambda^T \mathbf{x}} \mathcal{G}\right) \geq 1 - \frac{4}{T^4},$$

$$\mathcal{G} = \left(r_{\max} \sqrt{\mathbf{x}^T (\mathbf{X}^T \hat{\Omega}_\lambda^{-1} \mathbf{X})^{-1} \mathbf{x}} + \sqrt{\mathbf{x}^T (\mathbf{X}^T \hat{\Omega}_\mu^{-1} \mathbf{X})^{-1} \mathbf{x}}\right).$$

With Service time intervals

Online Batch Linear Upper Confidence Bound Algorithm

Algorithm 1 Online Batch LinUCB Algorithm (BLinUCB).

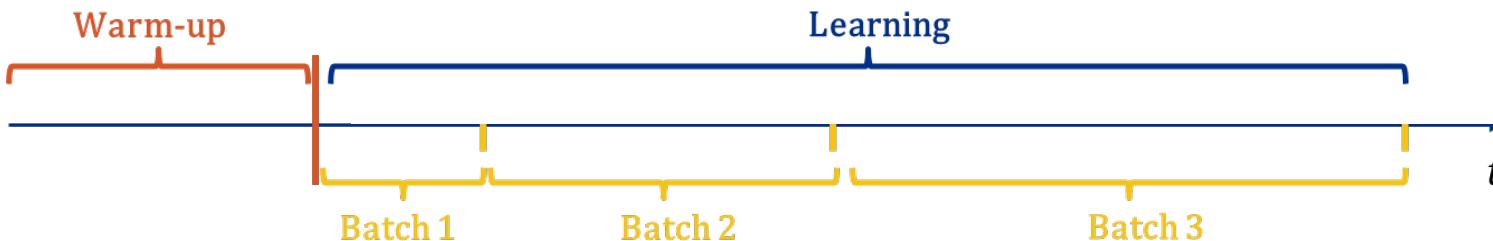
```
1: Input:  $T, p_L, p_U, d_f$ .  
2: Initialize:  $\tau, I_m, M, \mathcal{P}_b$  as in Section 4.2.  
3: Warm-up Phase:  
4: for  $p \in \mathcal{P}_b$  do  
5:   Offer price  $p$ , record  $\hat{d}_i(p)$  for arriving customers and  
    $\hat{g}_i(p'), \forall p' \in [p_L, p_U]$  for leaving customers.  
6:   if  $n_m^s(p) \geq 8 \log(T)$  then  
7:     Update  $\mathbf{X}, \Omega_\lambda, \Omega_\mu, \mathbf{d}, \mathbf{y}_\mu$   
8:   Continue.
```

```
9:   end if  
10:  end for  
11:  Compute  $\hat{\theta}_\lambda$  and  $\hat{\theta}_\mu$  by (5) and (6)  
12:  Learning Phase:  
13:  for  $m = 1, \dots, M$  do  
14:    Choose  $p_m = \operatorname{argmax}_{p \in [p_L, p_U]} U_{m-1}(p)$ .  
15:    Offer  $p_m$  in batch  $m$ , i.e., for  $I_m \tau$  periods.  
16:    Record  $\hat{d}_i(p_m)$  for arriving customers and  
     $\hat{g}_i(p), \forall p \in \mathcal{P}$  for leaving customers.  
17:    Update  $\mathbf{X}, \hat{\Omega}_\lambda, \hat{\Omega}_\mu, \mathbf{d}, \mathbf{y}_\mu$ ; Compute  $\hat{\theta}_\lambda$  and  $\hat{\theta}_\mu$ .  
18:  end for
```

Online Batch Linear Upper Confidence Bound Algorithm

- Initialize parameters $\tau = (\log(T))^2$, $I_m = 2^m$

$$I_m \tau$$



Definition 3. The upper confidence bound of the revenue rate associated with price p by the end of batch m is:

$$U_m(p) = \left(\frac{\hat{\theta}_\mu^T \mathbf{x}}{\hat{\theta}_\lambda^T \mathbf{x}} + \frac{\sqrt{32 \log(T)}}{\hat{\theta}_\lambda^T \mathbf{x}} \mathcal{G} \right) p.$$

Algorithm 1 Online Batch LinUCB Algorithm (BLinUCB).

```

1: Input:  $T, p_L, p_U, d_f$ .
2: Initialize:  $\tau, I_m, M, \mathcal{P}_b$  as in Section 4.2.
3: Warm-up Phase:
4: for  $p \in \mathcal{P}_b$  do
5:   Offer price  $p$ , record  $\hat{d}_i(p)$  for arriving customers and
       $\hat{g}_i(p')$ ,  $\forall p' \in [p_L, p_U]$  for leaving customers.
6:   if  $n_m^s(p) \geq 8 \log(T)$  then
7:     Update  $\mathbf{X}, \hat{\Omega}_\lambda, \hat{\Omega}_\mu, \mathbf{d}, \mathbf{y}_\mu$ 
8:   Continue.

```

```

9:   end if
10:  end for
11:  Compute  $\hat{\theta}_\lambda$  and  $\hat{\theta}_\mu$  by (5) and (6)
12:  Learning Phase:
13:  for  $m = 1, \dots, M$  do
14:    Choose  $p_m = \operatorname{argmax}_{p \in [p_L, p_U]} U_{m-1}(p)$ .
15:    Offer  $p_m$  in batch  $m$ , i.e., for  $I_m \tau$  periods.
16:    Record  $\hat{d}_i(p_m)$  for arriving customers and
         $\hat{g}_i(p)$ ,  $\forall p \in \mathcal{P}$  for leaving customers.
17:    Update  $\mathbf{X}, \hat{\Omega}_\lambda, \hat{\Omega}_\mu, \mathbf{d}, \mathbf{y}_\mu$ ; Compute  $\hat{\theta}_\lambda$  and  $\hat{\theta}_\mu$ .
18:  end for

```

Performance

Theoretical:

$$\mathcal{R}_T := \mathbb{E} \sum_{t=1}^T J_t^{\pi^*} - \mathbb{E} \sum_{t=1}^T J_t^{\pi}$$

Clairvoyant OPT

Learning Policy

Theorem 1. *The T -period cumulative regret of BLinUCB is bounded by $\tilde{O} \left(d_f \sqrt{T} \right)$.*

Performance

Theoretical:

$$\mathcal{R}_T := \mathbb{E} \sum_{t=1}^T J_t^{\pi^*} - \mathbb{E} \sum_{t=1}^T J_t^{\pi}$$

Clairvoyant OPT

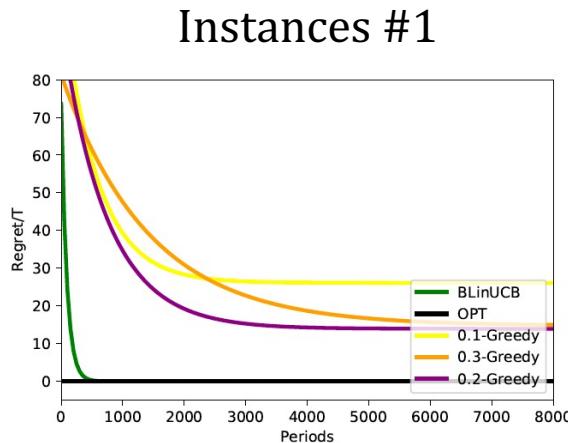
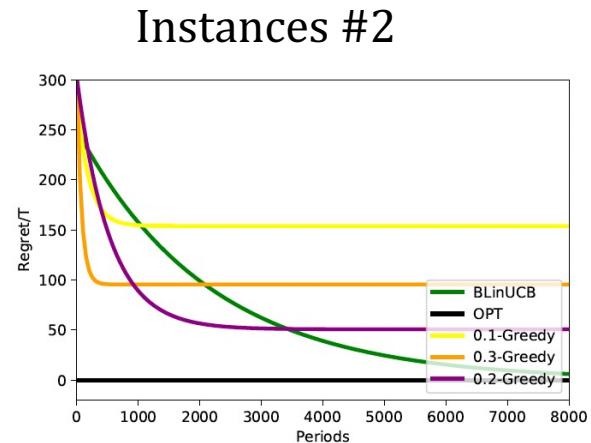
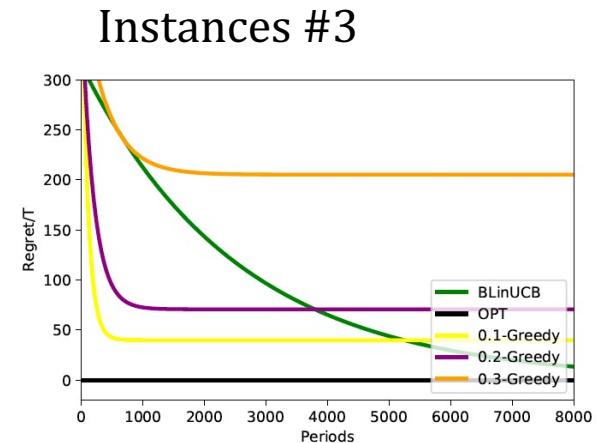
Learning Policy

Theorem 1. The T -period cumulative regret of BLinUCB is bounded by $\tilde{O} \left(d_f \sqrt{T} \right)$.

Empirical:

Time Average Regret

$$\frac{\mathbb{E} \sum_{t=1}^T J_t^{\pi^*} - \mathbb{E} \sum_{t=1}^T J_t^{\pi}}{T}$$



BLinUCB

0.1-greedy

0.2-greedy

0.3-greedy

OPT

ϵ –Greedy benchmark: chooses $\arg\max_p \frac{\hat{\theta}_\mu^T \mathbf{x}}{\hat{\theta}_\lambda^T \mathbf{x}} p$ with probability $1 - \epsilon$; randomly chooses other price with ϵ

BLinUCB performs very well. The time average regret converges to 0 quickly.

Thank You!!