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Problem Modelling: Online Learning and Pricing with Reusable Resource

A firm is endowed with a finite capacity of ¢ reusable products

In each period t, the firm posts a price p € [p;, py|

Customers arrive according to a Poisson process with rate 4,, and they are served on a first-arrive-first-
serve basis by occupying one unit of resource following an exponential distribution with rate u,

Goal: maximizing revenue

arrival rate 4, service rate [,

The firm does not know the arrival rates 4,, and the service rates y,, a priori
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Problem Modelling: Linear Bandits with Sub-Exponential Rewards

Price p — Feature Vectorx,, € R

Offer price:
P1
D2

Pn

Assume linear mappings:

1 1
= HIXP,

— — =0"x
Ap Hp wep

Arrival time intervals
@ Count: ny,(p)

@ Observation: c?,-(p), i=1,...,nm(p)
e Empirical Mean: d, = Z?’:”gp) di(p)/nm(p)

p——

@ d, follows an Erlang distribution Erlang(n,(p), nm(p)A,)
® dp ~ SE(7 (s o)

) d_p = QIXP + €p and €p ™~ SE( nm(z)kg’ "m(lz’))‘P)
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Problem Modelling: Linear Bandits with Sub-Exponential Rewards
1 1

Price p — Feature Vectorx,, € R%f Assume linear mappings: = 0y Xp, e = 9;{ Xp
p p
Offer price: Arrival time intervals
@ Count: ny,(p)
P1 s .
@ Observation: d;(p), i =1,...,nm(p) e d), follows an Erlang distribution Erlang(nm(p), nm(p)A,)
b2 e Empirical Mean: d, = Z;’;’g”) di(p)/nm(p) _ ® dy ~ SE(;5xs o (p)/\ )
® d,=0{x,+¢, and ¢, ~ SE(; m(P)AZ? 1 (p))\p)
Pn
\ )
|
Data . Estimate Proposition 2. Consider N implemented prices with N >
@ X = [Xp,Xp,,...,Xp,] " : features . A A ds and n,,(p) > 8log(T') for any implemented price p.
A CE R —) _ (xTHO-1Ix\-1wTH-1 I Al =
133 - 1T : . Or = (X0, X)7'X'Qy°d m— Then, for a new feature vector x':
e d=[dp,dp,,...,dp]" mean arrival time
th &, 0Tx" — 6Tx/| 2
o Q, with i*" element m( 3 P (\/X'T(XTﬂl){)lx’ > 4/321og(T) | < T2

Proposition 3. For price p with a feature vector x, we have: Wwhere With Service time intervals
/\p égx

p ( Ap 321og(T) g> i = G = <rmax\/xT(XTQ;1X)—1x+ \/xT(XTQ;1X)—1x> :
éfx — T4

Hp éfx
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Online Batch Linear Upper Confidence Bound Algorithm

Warm-up

Algorithm 1 Online Batch LinUCB Algorithm (BLinUCB).

1: Input: T, pr, pu, dy.

2: Initialize: 7, 1,,,, M, P} as in Section 4.2.

3: Warm-up Phase:

4: for p € P, do

5. Offer price p, record d;(p) for arriving customers and
gi(p'). VYo' € Ipr..pr/] for leaving customers.

6:  ifn;,(p) > 8log(T) then
% Update X, 2,82, d,y,
8: Continue.

9.
10:
) b
12;
15:
14:
15:
16:

17:
- end for

end if

end for

Compute 0 \ and HAH by (5) and (6)

Learning Phase:

form=1,...,M do
Choose p,, = argmaxpe[pL,pU]Um_l(p).
Offer p,, in batch m, i.e., for I,,,7 periods.
Record d;(p,,) for arriving customers
gi(p), Vp € P for leaving customers.
Update X o qu d, y,; Compute 0 and 9

and
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Online Batch Linear Upper Confidence Bound Algorithm

« Initialize parameters 7 = (log(T))?, I, = 2™ I

Warm-up Learning

Definition 3. The upper confidence bound of the revenue
rate associated with price p by the end of batch m is:

) ]
I ||l

Algorithm 1 Online Batch LinUCB Algorithm (BLinUCB).

1: Input: T, pr, pu, dy.

2: Initialize: 7, 1,,,, M, P} as in Section 4.2.

3: Warm-up Phase:

4: for p € P, do

5. Offer price p, record d;(p) for arriving customers and
gi(p'). VYo' € Ipr..pr/] for leaving customers.

6:  ifn;,(p) > 8log(T) then
% Update X, 2,82, d,y,
8: Continue.

9.
10:
) b
12;
15:
14:
15:
16:

17:
- end for

0Tx  /321og(T)
U,(p) = | £+ _ G| p.
! (v) <9;—fx 6T x P
t
end if
end for

Compute 0 \ and HAH by (5) and (6)
Learning Phase:
form=1..... M do
Choose p, = argmax,ci,. »,1Um—1(p).
Ofter p,, ip batch m, 1.e., tfor /,, 7 periods.
Record d;(p,,) for arriving customers and
gi(p), Vp € P for leaving customers.
Update X o qu d, y,; Compute 0 and 9
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Performance

Theoretical:

Clairvoyant OPT

Learning Policy

Theorem 1. The T'-period cumulative regret of BLinUCB

is bounded by O (d f \/T)
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Performance

Theoretical: .
Rp:=EY JI —EY Jf
t=1 t=1
Clairvoyant OPT Learning Policy
Empirical:
Instances #1
Time Average Regret 70
T T :Z
EY Jr —EY JT
t=1 t=1 =51 m— BLiNUCB
T 2\ =F-all

0 1000 2000 3000 4000 5000 6000 7000 8000
Periods

BLinUCB

NT

€ —Greedy benchmark: chooses argmax, 7

0.1-greedy

Theorem 1. The T'-period cumulative regret of BLinUCB

is bounded by O (d f \/T)

Instances #2
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2004

150 \

100 - =
== BLINUCB
— OPT

\ 0.1-Greedy
0.3-Greedy

0 m— 0.2-Greedy =

Regret/T

50 -
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Periods

0.2-greedy

BLinUCB performs very well. The time average regret converges to 0 quickly.

Instances #3

300 \
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200+
[
© 1504
o
Q
o
100 - "
= BLINUCB
— OPT
50 0.1-Greedy
= 0.2-Greedy
0 0.3-Greedy =
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OPT

‘;:p with probability 1 — €; randomly chooses other price with €
A
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