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Modeling shot location data

▶ In professional basketball, shot location data remains to be a
fundamental metric for evaluating players and has aroused
great research interests (e.g., Reich et al., 2006; Miller et al.,
2014; Jiao et al., 2021).

Figure: Shot data Display (2017-2018 season). On half court image, each
point represents one shot.
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Key Questions and Our Contributions

▶ Key questions
▶ random nature of shot location data
▶ identifying clusters of regions on which a given player has

similar shooting behavior while incorporating the prior belief
that spatially contiguous regions are similar

▶ Our contributions
▶ A novel nonparametric Bayesian method for point process
▶ A Gibbs sampler that enables efficient Bayesian inference

across models of different dimensions without RJMCMC or
samplers allocation
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Point Process Data

▶ A spatial point pattern is a data set y = (s1, s2, ..., sℓ) consists
of locations (s1, s2, ..., sℓ) of points that are observed in a
bounded region B ⊆ R2, which is a realization of spatial point
process Y .

▶ NY (A) =
∑ℓ

i=1 1(si ∈ A) is a counting process associated
with the spatial point process Y , which counts the number of
points of Y for area A ⊆ B.

▶ For the Poisson process Y over B, which has the intensity
function λ(s), NY (A) ∼ Poisson(λ(A)), where
λ(A) =

∫
A λ(s)ds.

▶ We signify that a set of points y = (s1, s2, ..., sℓ) follows a
Poisson process as

y ∼ PP(λ(·)). (1)
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Poisson Process

▶ Let A1,A2, · · · ,An be a partition of B, i.e., disjoint subsets
such that

⋃n
i=1 Ai = B.

▶ For each region Ai , i = 1, · · · , n, we have constant intensity λi

over region Ai . The likelihood is written as:

L =
n∏

i=1

fpoisson(NY (Ai )|λi ), (2)

where fpoisson is the probability density of Poisson distribution.
In later sections, we use N(Ai ) to denote NY (Ai )
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Dirichlet Process Mixture Model

yi |Zi , βZi
∼ F (βZi

)

Zi |p ∼ Discrete(p1, · · · , pK )
βZi

∼ G0 p ∼ DirichletK (α/K , · · · , α/K )

(3)

▶ Zi stands for the cluster of ith observation

▶ βci means the parameter of ci th cluster

▶ α stands for the precision parameter

▶ G0 is the base measure in Dirichlet process

▶ Issue: Incorporating spatial information?
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Incorporating Spatial Homogeneity

▶ We impose a Markov random field constraint (Besag et al.,
1995; Orbanz and Buhmann, 2008)
M(λ1, . . . , λn) :=

1
ZH

exp {−H(λ1, . . . , λn)} on λ to
encourage rate parameters in nearby regions to be similar

G ∼ DP(α,G0)

(λ1, . . . , λn) ∼ M(λ1, . . . , λn)
n∏

i=1

G (λi )

N(Ai ) | λ1, . . . , λn ∼ Poisson(λiµ(Ai )) i = 1, . . . , n,

(4)
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Cost Function

▶ H(λ1, . . . , λn) :=
∑

C∈C HC (λC )

▶ C denotes the set of all cliques, or completely connected
subsets in the underlying neighborhood graph
N = (VN ,EN ,WN )

▶ Pairwise interactions

H(λi |λ−i ) := −η
∑
j∈∂(i)

I (λi = λj) = −η
∑
j∈∂(i)

I (zj = zi ) (5)

▶ η: a parameter controlling the extent of spatial homogeneity
with larger values dictating higher degree of spatial
homogeneity
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Algorithm Sketch

▶ A collapsed Gibbs sampler that enables the iterative updating
of Poisson rate parameters and latent variables

▶ Dahl’s method (Dahl, 2006) for post MCMC inference -
identifying the best post burn-in iteration for estimation

▶ Selecting the optimal tuning parameter via Bayesian
information criteria
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Simulation study: Ground truth

Truth 2.5% quantile Median 97.5% quantile
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Figure: Simulation configurations for intensity surfaces under grid size of
20× 20, with fitted intensity surfaces. Element-wise median and
quantiles are calculated out of 100 replicates.
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Comparison to other methods
S

et
tin

g 
1

S
et

tin
g 

2
S

et
tin

g 
3

B−splines BART CAR−Poisson KDE LGCP MFM−NHPP MRF−DPM−NHPP

0
5

10
15

20
0

5
10

15
20

0
5

10
15

20

05101520 05101520 05101520 05101520 05101520 05101520 05101520

x

y

0
1

2
3

|r
el

at
iv

e 
bi

as
|

Figure: Absolute relative bias of posterior mean estimates. Dark grey:
regions with large absolute relative bias (> 3.5). 11 / 15
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NBA Data Analysis

▶ 20 top players in the 2017-2018 NBA regular season.

▶ The attacking half of the basketball court is divided into
50× 35 = 1750 equally-sized grid boxes of approximately
1ft× 1ft following Miller et al. (2014).

▶ Parallel MCMC chains with η ∈ {0, 0.5, . . . , 6} for 5000
iterations using random initial values

▶ Assessing predictive performance via p-thinning approach
(Illian et al., 2008) mean absolute error (MAE) defined as

MAE = 1
n

∑n
i=1

∣∣∣1−p
p λ̂(Ai )− N(Ai )

∣∣∣ , where λ̂(Ai ) is the

estimated intensity of region Ai based on a random subset of
points (training data) and N(Ai ) is the number of observed
points falling into region Ai in the hold-out data.
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NBA Data Results
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MAE Comparison for predictive assessment
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Thank you

Welcome to reading our paper!
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