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Stochastic Deep Networks with Linear Competing Units for

Model-Agnostic Meta-Learning

m Meta-Learning (ML): Challenge of generalizing learned representations
to new tasks, where only limited data is available.

®m Model-Agnostic Meta-Learning (MAML): Tunes the parameters of a
trained model to learn a new task with few gradient updates.

m Contribution: A novel MAML framework with: (i) improved
generalization capacity; and (ii) immensely decreased trainable
parameters and imposed memory footprint.

m Stochastic Local Competition (LWTA) Units + Stochastic Weights —
Completely outperform the SOTA in few-shot image classification and
regression benchmarks.
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B Brain structure: Lateral “connections” among blocks of neurons which
compete for their firing —Local Winner-Takes-All (LWTA).
B [t appears that this mechanism is of stochastic nature:

[J The same system may produce different firing outcomes when
presented with exactly the same stimulus at multiple times.

B Stochasticity may be crucial for endowing the learned representations
with the capacity to generalize better, within a task and across tasks.
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Contribution

B A novel deep network paradigm founded upon the concepts of Local
Competition and Stochasticity.

B Local Competition yields a sparse output in each layer; one unit with
non-zero output in each block, and the rest zeroed-out.

B This is determined by the outcome of local competition among linear
units within each block; multiple blocks per layer.

B Main Source of Stochasticity: Competition is stochastic; winner is
determined through sampling from an appropriate Categorical posterior.
x Stochastic LWTA Layers.
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Conventional Network Architectures

Dense-Layer Model

Input layer Hidden Layer 1 Hidden Layer 2 Output layer

1

zr —()

m Layer Output:

Observations: « € R,

R nonlinear units in a considered
layer.

The weights of all synapses:
W wiy, il r|E
Standard inner-product

computation: h, = W, r|R.

Then, application of a nonlinear
activation (), e.g. ReLU.

y=c(WTx+b)cRE
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Stochastic LWTA Networks

Dense-Layer Model

Input layer LWTA layer LWTA layer Output layer

1

m Observations: « € RY.

m The weights of all synapses:
W Wi,r,5, ZHaTl{%?]'{

m Units compute inner-products:
I .
Zi:l Wi, * Ly V?", J-

R
» We introduce the winner indicator latent variables € € one_hot(.J)™.

® Layer Output: y with (r - j)-th component y,. ;:

I
Yrj =i ) Wig; i €R

=l




Stochastic LWTA Networks

® Weights: vec(W') ~ N(0, I') and latent variables: £ ~ Categorical(1/.J).

Categorical Posterior for Winner Sampling

® We consider a block-wise posterior of the form:

q(&,) = Categorical <§T

I
softmax(Z[wi,m]j:l : xz))

i=1

Gaussian Posterior for Weights

B We consider an approximate (variational) posterior of the form:

q(vec(W)) = N (vec(W)|p, diag(c?))

where 1 £ {p, 02} are the means and variances of the Gaussian weight
posteriors, respectively.
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Stochastic LWTA Networks

Training

® Let CE(Y;, fu(X5; I3 W)) be the categorical cross-entropy between data labels
Y; and class probabilities fy, (X;; &, W) obtained by the network.

B We resort to ELBO maximization for training; the ELBO yields the expression:
Ly, (1) = —CE(Y;, fy(Xi;6, W)) = Y _(logq(€,.;) — logp(£;.5))

i
- Z (log q(tt,r,;) — log p(tr,r,5))

t,r,J

® We use the following reparameterization tricks: W, ; = fit,r ;j + Ot r j€, With
€ ~ N(0,1); and:

fm' = softmax((log&,.; + g-;)/7)

where &, ; £ q(&,.;), gr; = — log(—logl/(0, 1)), and 7 regulates relaxation.
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Stochastic LWTA Networks

B We draw a set of B samples of the Gaussian connection weights from the
trained posteriors N (p, o2).

® In addition, we select the winning units in each block of the network by
similarly sampling from the posteriors g(&).

B This results in a set of B output logits from the network, which we average to
obtain the final predictive outcome:

B
f’l/J(X/;éa W) ~ éZfl/J(leés,Ws)
s=1

where £, and W, are sampled directly from the posteriors (&) and ¢(W),
respectively.

® B = 4 drawn samples are sufficient (favorable accuracy/complexity trade-off).
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10:
11:

PRAPPeRRE

Require: P(T): distribution over tasks
. Initialize ¢ := {u, 0%}
: Define outer-step size 5 and inner learning rate o

fori=12,...do
Inner training loop:
Sample task T; ~ P(T')

Use the ELBO to compute loss L, ()
Compute adapted parameters with SGD: )]

Y= aVy Lz, (fy)
Outer training loop:

Derive ¢ < % + B(¢; — ¢)

end for

m The stochastic nature of the

weights, W, results in the
updates taking place over the
posterior means, g and
variances, o2.

m The stochastic nature of both
the representations (stemming
from &), and the network
weights themselves, implies
that proper training must rely
on optimization of the ELBO
function of the network.




Classification experiments
Defining a new SOTA paradigm

® Networks comprising 2 layers.

® 16 blocks and 2 competing units per block on the former layer.
® 8 blocks with 2 neurons per block on the latter.

Omniglot 20-way | Mini-ImageNet 5-way
Algorithm I-shot  5-shot | 1-shot 5-shot
Matching Nets 93.8 98.50 43.56 55.31
LSTM Meta-Learner - - 43.44 60.60
MAML (original) 95.80  98.90 48.70 63.11
MAML (locally-reproduced) 95.47  98.60 48.57 62.87
Reptile (original) 88.14 96.65 47.07 62.74
Reptile (locally-reproduced) 87.98 96.35 46.83 62.40
ABML (locally-reproduced) 90.21 93.39 44.23 52.12
BMAML (locally-reproduced) | 96.92 98.11 53.10 64.80
PLATIPUS (locally-reproduced) | 94.35 98.30 49.97 63.13
StochLWTA-ML 97.79  98.97 54.11 66.70




Is there a computational time trade-off for the increased
accuracy?

Performance comparison: Average wall-clock time (in msecs), training
iterations and number of baselines’ trainable parameters

® Our methodology takes 77% less training time than the less efficient algorithms
ABML, BMAML, PLATIPUS, and is comparable to other approaches.

® Contains a total number of trainable parameters that is one order of magnitude
less on average than the best performing baseline methods.

Algorithm Training Prediction Training iterations D4 parameters Dp parameters D¢ parameters
PLATIPUS (local) 1603.39  602.77 333600 560025 615395 580440
BMAML (local) 1450.31 514.43 301800 560025 615395 580440
ABML (local) 678.48 265.78 138000 224010 246158 232176
MAML (local) 288.25 103.28 60000 112005 123079 116088
FOMAML (local)  284.49 102.34 60000 112005 123079 116088
Reptile (local) 284.30 102.27 60000 113221 124613 117463
StochLWTA-ML  282.90 113.44 60000 54549 60112 56745
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How does stochastic competition contribute to classification
accuracy?

hot classification accuracy (%)

®m Replacing ReL.U with deterministic LWTA yields negligible gains.
® Stochastic LWTA units yield a clear improvement in all cases.
Omniglot 20-way Mini-I 5-way
Algorithm Network type 1-shot  5-shot  l-shot 5-shot
I
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Eftfect of block size J in predictive (%) accuracy.

Few-shot classification benchmarks

® Increasing the number of competing units per block to .J = 4 or J = 8 does not
notably improve the results of our approach.

® On the contrary, it increases the number of trained parameters, thus leading to
higher network computational complexity.

Omniglot 20-way Mini-Imagenet 5-way CIFAR-100 5-way

Number of units 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
J=2 97.79 98.97 54.11 66.70 54.60 66.73
J=4 96.33 98.55 53.99 66.65 54.51 66.13
J=28 95.38 98.83 53.70 67.08 54.45 66.18
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How does task batch size affect the performance?

Mini-Imagenet 5-way 1-shot setting

® Our model performs optimally with task batch size of 50 in terms of both
training time and predictive accuracy.

B We have obtained similar results for all other considered datasets.
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Figure: (a) Predictive accuracy (b) Training time per iteration (msecs)
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How does sample size B at prediction time affect predictive

accuracy?

Few-shot classification benchmarks

® An increase in sample size, B, does not always yield an accuracy increase.

B B = 4 allows for the best predictive accuracy/computational complexity
trade-off
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—*— Omniglot 20-way 1-shot
—*— Mini-imagenet 5-way 1-shot
—#— CIFAR-100 5-way 5-shot
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Figure: Predictive (%) accuracy
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How important are the stochastic weights?

Omniglot 20-way ablation study

® Stochastic LWTA units offer the greatest fraction of the accuracy gains, but the
Gaussian weights are still indispensable.

Gausssian vs deterministic weights (point estimates).

Network type 1-shot S-shot
ReLU (point estimates) 95.63  96.17
ReLU (Gaussians) 95.80 96.48

stochastic LWTA (point estimates) 97.68  98.85
stochastic LWTA (Gaussians) 97.79 98.97
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How do SOTA perform with a parameter count reduced to
be about the same as StochLWTA-ML?

Omniglot 20-way 1-shot setting

m Replaced stochastic LWTA layers with dense ReLU layers of the same size, and
dropped the Gaussians from the weights.

® This yielded between 2.2% and 3.5% reduction in classification accuracy.

Wall-clock time (in msecs), training iterations, predictive accuracy and trainable

parameters.
Algorithm Training Prediction Training iterations Accuracy (%) Parameters
PLATIPUS (local)  490.67 22191 107100 91.57 55817
BMAML (local) 479.03 200.68 103560 94.11 56321
ABML (local) 402.38 170.32 87000 87.92 55312
MAML (local) 272.89 91.24 60000 92.10 55917
FOMAML (local)  269.01 91.12 60000 92.83 55917
Reptile (local) 268.72 90.83 60000 85.60 56525
StochLWTA-ML  272.14 102.56 60000 97.79 54549
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Regression experiments

Sinusoidal regression results

® (a): Equally fast convergence as MAML, Reptile; convergence speed is much
higher than the time-consuming ABML, BMAML and PLATIPUS methods.

® (b): Yields the most time-efficient method among the baselines.
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Figure: (a) MSE of default setting [Finn et al., 2017], (b) MSE of challenging setting
[Yoon et al., 2018].
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