

Thinking Like Transformers

Gail Weiss, Yoav Goldberg, Eran Yahav

Transformers are very effective

Transformers are very effective

But we don't know how they work

Question

What is the computational model of the Transformer-encoder?

Can it solve "Reverse"? abcde → edcba

abcde → edcba

|--|

abcde → edcba

abcde → edcba

"standard" programming language

e d c b a

abcde → edcba

"standard" programming language

e d c b a

abcde → edcba

"standard" programming language

e d c b a

abcde → edcba

abcde → edcba

Restricted Access Sequence Processing

Restricted Access Sequence Processing

Embedding

Restricted Access Sequence Processing

Symbolic:

Embedding

Inputs

instead of [0.1,-0.2,0.65,...???]

Restricted Access Sequence Processing

Primitive

Sequences:

tokens = [R,A,S,P]

indices = [0,1,2,3]

length = [4,4,4,4]

Restricted Access Sequence Processing

Primitive

Sequences:

tokens = [R,A,S,P]

indices = [0,1,2,3]

length = [4,4,4,4]

Elementwise Operations:

indices*2 = [0,2,4,6]

indices+length = [4,5,6,7]

. . .

Restricted Access Sequence Processing

Restricted Access Sequence Processing

Restricted Access Sequence Processing

Restricted Access Sequence Processing

Restricted Access Sequence Processing

Restricted Access Sequence Processing

indices*2 = [0,2,4,6]

indices+length = [4,5,6,7]

. . .

Restricted Access Sequence Processing

indices*2 =
$$[0,2,4,6]$$

indices+length =
$$[4,5,6,7]$$

. .

Can it solve "Reverse"?

abcde → edcba

a b	С	d	е
-----	---	---	---

Can it solve "Reverse"?

abcde → edcba

Can it solve "Reverse"?

abcde → edcba

target =
$$length-indices-1$$
; = $[3,2,1,0]$


```
target = length-indices-1;
flip = select(target,indices,==);
```



```
flip = select([3,2,1,0],[0,1,2,3],==)
3 2 1 0
0 F F F T
1 F F T F
2 F T F F
3 T F F
```

Restricted Access Sequence Processing

```
target = length-indices-1;
flip = select(target,indices,==);
reverse = aggregate(flip,tokens);
```


reverse=aggregate(flip, [R,A,S,P])

```
RASP

FFTRASP => P

FFTFRASP => S => [P,S,A,R]

FTFFRASP => A

TFFFRASP => R
```

```
target = length-indices-1;
flip = select(target,indices,==);
reverse = aggregate(flip,tokens);
```



```
target = length-indices-1;
flip = select(target,indices,==);
reverse = aggregate(flip,tokens);
```



```
target = length-indices-1;
flip = select(target,indices,==);
reverse = aggregate(flip,tokens);
```



```
target = length-indices-1;
flip = select(target,indices,==);
reverse = aggregate(flip,tokens);
```



```
target = length-indices-1;
flip = select(target,indices,==);
reverse = aggregate(flip,tokens);
```



```
target = length-indices-1;
flip = select(target,indices,==);
reverse = aggregate(flip,tokens);
```



```
target = length-indices-1;
flip = select(target,indices,==);
reverse = aggregate(flip,tokens);
```


Conclusion

- RASP: abstraction for transformer-encoder
- Solve formal tasks in transformer-encoders
 - Even Dyck-k for arbitrary k and unbounded depth!
- Translate to neural transformer-encoders architectures
 - Exact weights still required

More details in paper!

Try it out!!:

github.com/tech-srl/RASP

