Private Stochastic Convex Optimization: Optimal Rates in L_1 Geometry

Hilal Asi Stanford University

Joint work with:

Vitaly Feldman

Apple

Tomer Koren
Tel Aviv University

Kunal Talwar Apple

ICML 2021

Stochastic Convex Optimization (SCO)

Samples $S = \{S_1, S_2, ..., S_n\}$ where $S_i \sim P$

Convex Parameter Space $\mathcal{X} \subseteq \mathbb{R}^d$

Convex loss function $f(x; S) : \mathcal{X} \times S \rightarrow \mathbb{R}$

Population loss $f(x) = \mathbb{E}_{S \sim P}[f(x; S)]$

Goal: find a solution $\hat{x} \in \mathcal{X}$ that minimizes

Excess population risk
$$f(\hat{x}) - \min_{x \in \mathcal{X}} f(x)$$

Stochastic Convex Optimization (SCO)

Goal: find a solution $\hat{x} \in \mathcal{X}$ that minimizes

Excess population risk
$$f(\hat{x}) - \min_{x \in \mathcal{X}} f(x)$$

Problem is well-understood

$$\mathcal{X} \text{ is unit } \mathcal{\ell}_1 \text{ ball}$$

$$\text{Optimal risk} = \sqrt{\frac{\log d}{n}}$$

$$f \text{ is 1-Lipschitz}$$

$$\text{wrt } \mathcal{\ell}_1 \text{ norm } f(x) - f(y) \leq \|x - y\|_1$$

Differentially Private Stochastic Convex Optimization (DP-SCO)

Goal: find a solution $\hat{x} \in \mathcal{X}$ that minimizes

Excess population risk
$$f(\hat{x}) - \min_{x \in \mathcal{X}} f(x)$$

Additional constraint: algorithm is $(arepsilon,\delta)$ -differentially private

Problem is (relatively) well-understood in ℓ_2 -Geometry [BFTT19, FKT20]

$$\mathcal{X}$$
 is unit ℓ_2 ball
$$f \text{ is 1-Lipschitz} \qquad \qquad \text{Optimal private risk} = \qquad \frac{1}{\sqrt{n}} + \frac{\sqrt{d}}{n\varepsilon}$$

This work: what about other geometries?

Private Optimization in ℓ_1 -Geometry

This work: DP-SCO in ℓ_1 -Geometry

$${\mathscr X}$$
 is unit ${\mathscr C}_1$ ball

$$f ext{ is 1-Lipschitz } f(x) - f(y) \le ||x - y||_1$$

Previous work: [JT14, TTZ15] for empirical loss $f_{\mathcal{S}}(x) = \frac{1}{n} \sum_{i=1}^{n} f(x; S_i)$

Empirical risk:
$$\left(\frac{\text{poly}(\log d)}{n\varepsilon} \right)^{2/3}$$

Population risk:
$$\sqrt{\frac{d}{n}} + \left(\frac{\text{poly}(\log d)}{n\varepsilon}\right)^{2/3}$$

Our contributions

1. Optimal rates for DP-SCO in \mathcal{E}_1 -geometry (with tight lower bounds)

Non-smooth functions:
$$\sqrt{\frac{\log d}{n}} + \frac{\sqrt{d}}{n\varepsilon}$$

Smooth functions:
$$\sqrt{\frac{\log d}{n}} + \left(\frac{\text{poly}(\log d)}{n\varepsilon}\right)^{2/3}$$
 Privacy for free even when

smoothness helps in ℓ_1 geometry

$$d \gg n$$
 and $\varepsilon \approx \frac{1}{n^{1/4}}$

2. Optimal rates for DP-SCO in ℓ_p -geometry with $p \in (1,2]$

Non-smooth functions:
$$\frac{1}{\sqrt{n}} + \frac{\sqrt{d}}{n\varepsilon}$$

tight lower bounds from [BGN21]

3. Faster runtime for non-smooth functions in ℓ_2 -Geometry

[FKT20]: $O(n^2)$

Our algorithms: $O(n^{3/2})$

Comparison to [BGN21]

1. Optimal rates for DP-SCO in ℓ_1 -geometry (with tight lower bounds)

Non-smooth functions:
$$\sqrt{\frac{\log d}{n}} + \frac{\sqrt{d}}{n\varepsilon}$$

Smooth functions:
$$\sqrt{\frac{\log d}{n}} + \left(\frac{\text{poly}(\log d)}{n\varepsilon}\right)^{2/3} \qquad \text{[BGN21]} \qquad \frac{\log d}{\sqrt{n\varepsilon}}$$

2. Optimal rates for DP-SCO in ℓ_p -geometry with $p \in (1,2]$

Non-smooth functions:
$$\frac{1}{\sqrt{n}} + \frac{\sqrt{d}}{n\varepsilon}$$
 [BGN21]
$$\frac{\sqrt{d}}{n^{3/4}\varepsilon}$$

Main techniques

Non-smooth case

- Reduction from DP-SCO to strongly convex DP-ERM
- Solve DP-ERM in \mathcal{C}_1 geometry using noisy mirror descent

Smooth case

- Private variance-reduced Frank-Wolfe algorithm
- Binary tree allocation of the samples for variance-reduction

Algorithm for Non-Smooth Functions

Two main ingredients

- 1. Reduction from DP-SCO to strongly convex DP-ERM
- 2. Solve DP-ERM using noisy mirror descent

DP-SCO

minimize the population loss
$$f(x) = \mathbb{E}_{S \sim P}[f(x; S)]$$

DP-ERM

minimize the empirical loss
$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f(x; S_i)$$

Optimal algorithms for strongly convex DP-ERM give optimal algorithms for DP-SCO

Based on iterative-localization [FKT20]

[FKT20] use localization to reduce DP-SCO to stable-ERM

Gives optimal rates for ℓ_2 geometry

Not sufficient for ℓ_1 geometry

Idea:

- 1. At each iteration, privately solve a regularized ERM problem
- 2. As the output is accurate, shrink diameter and repeat

Idea:

- 1. At each iteration, privately solve a regularized ERM problem
- 2. As the output is accurate, increase regularization and repeat

Algorithm (sketch)

- 1. Initialize $x_0 = 0$
- 2. For k = 1 to $\log n$
 - Find x_{k+1} by privately solve the ERM problem: $\frac{1}{n} \sum_{i=1}^{n} f(x; S_i) + \lambda ||x x_{k-1}||^2$
 - Increase regularization λ by a factor of 2 (shrinks diameter)

Algorithm (sketch)

- 1. Initialize $x_0 = \mathbf{0}$
- 2. For k = 1 to $\log n$
 - Find x_{k+1} by privately solve the ERM problem: $\frac{1}{n} \sum_{i=1}^n f(x; S_i) + \lambda ||x x_{k-1}||^2$
 - Increase regularization λ by a factor of 2 (shrinks diameter)

Main claim (informal)

If algorithm A solves λ -strongly convex DP-ERM with rate $\frac{1}{\lambda n} + \frac{a}{\lambda n^2 \varepsilon^2}$

then the above algorithm has population loss
$$\frac{1}{\sqrt{n}} + \frac{\sqrt{d}}{n\varepsilon}$$

Noisy Mirror Descent for DP-ERM

Noisy Mirror Descent

- 1. Initialize $x_0 = 0$
- 2. For t = 1 to T
 - Add noise to gradient: $\hat{g}_t = \nabla_x f(x_t; S_t) + \mathcal{N}(0, \sigma^2 \mathbb{I}_d)$
 - Apply mirror descent step: $x_{t+1} = \arg\min\{\langle \hat{g}_t, x \rangle + \frac{1}{\eta} D_h(x, x_t) \}$

Claim (informal)

Choosing h according to geometry, Noisy MD obtains excess loss $\frac{1}{\lambda n} + \frac{a}{\lambda n^2 \epsilon^2}$

$$\ell_1$$
 geometry: use $||x||_p^2$ with $p = 1 + \frac{1}{\log d}$

$$\ell_P$$
 geometry: use $||x||_p^2$ for $p > 1$

Algorithm for Smooth Functions

Main techniques

- Private variance-reduced Frank-Wolfe algorithm
- Exponential mechanism to apply Frank-Wolfe update (choose from d vertices)
- Binary tree allocation of the samples for variance-reduction

Frank-Wolfe Algorithm

Frank-Wolfe

For t = 1 to T:

1.
$$w_t = \arg\min_{x \in \mathsf{B}_1} \langle \nabla f(x_t), x \rangle$$

2. Set
$$x_{t+1} = (1 - \eta)x_t + \eta w_t$$

Main observation [TTZ15]: the minimizer w_t is a vertex of the ℓ_1 ball

Use Exponential mechanism to privately pick best vertex

Empirical risk [TTZ15]:
$$\left(\frac{\text{poly}(\log d)}{n\varepsilon} \right)^{2/3}$$

What about population risk?

Even without privacy, FW achieves only
$$\frac{1}{n^{1/3}}$$

Variance-Reduced Frank-Wolfe Algorithm [YCS19]

Variance-Reduced Frank-Wolfe (sketch)

• $v_0 = \nabla f(x_0; \mathcal{S}_0)$ where \mathcal{S}_0 is a set of n samples

• For
$$t = 1$$
 to T : $T \approx \sqrt{n}$

1.
$$v_t = v_{t-1} + \nabla f(x_t; \mathcal{S}_t) - \nabla f(x_{t-1}; \mathcal{S}_t)$$
 $|\mathcal{S}_k| \approx \sqrt{n}$

2.
$$w_t = \underset{x \in B_1}{\arg \min} \langle v_t, x \rangle$$

3. Set
$$x_{t+1} = (1 - \eta)x_t + \eta w_t$$

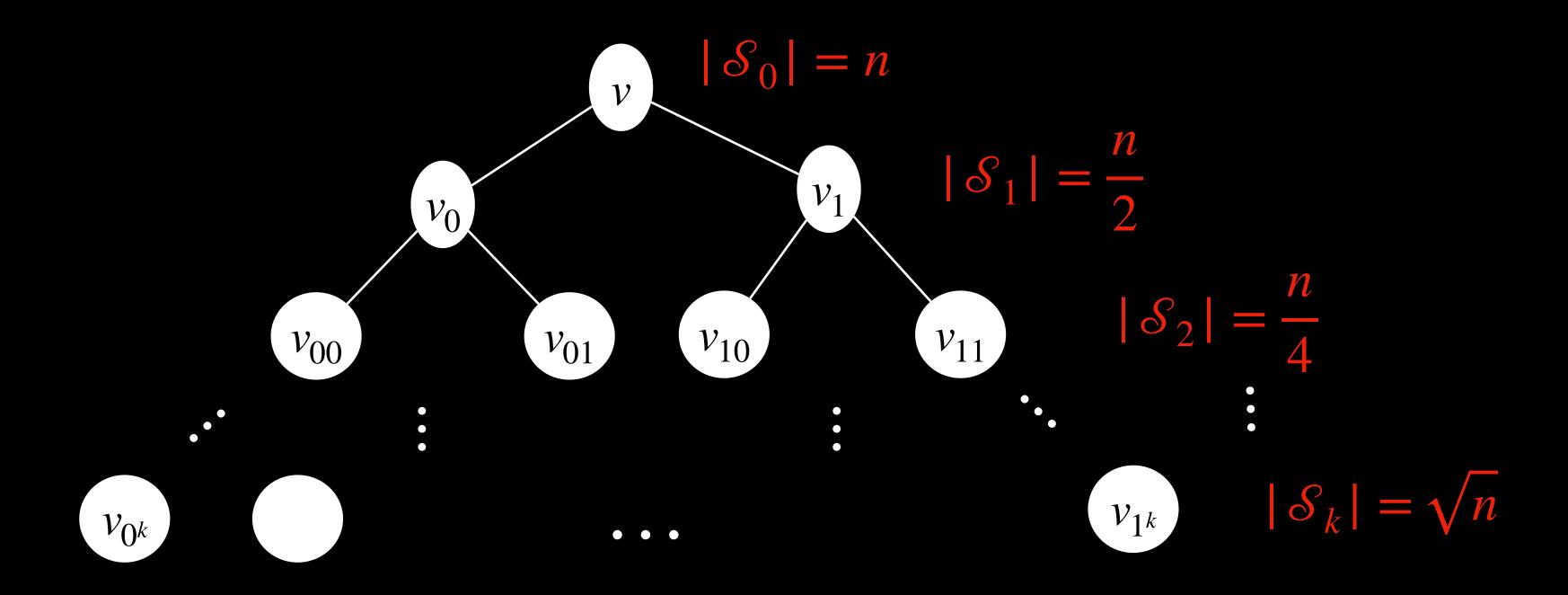
Achieves optimal population risk [YCS19] $\frac{1}{\sqrt{n}}$

Attempt 1: add noise to privatize v_k

Problem: samples in S_1 are used in \sqrt{n} updates!

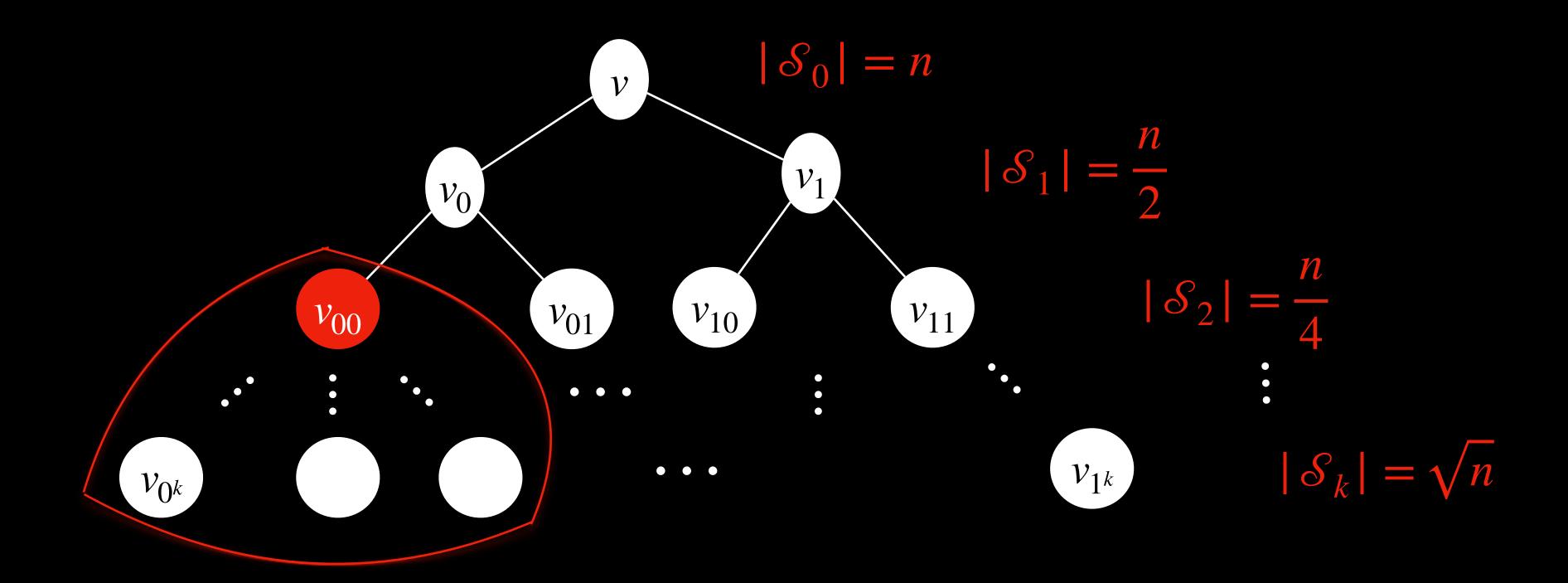
Results in sub-optimal bounds $\frac{\log a}{\sqrt{n\varepsilon}}$

Main idea: allocate the samples so that smaller sets are used in less updates



Use parent's gradient to reduce variance at current vertex

$$v_{01} = v_0 + \nabla f(x_k; \mathcal{S}_{01}) - \nabla f(x_{x-1}; \mathcal{S}_{01})$$

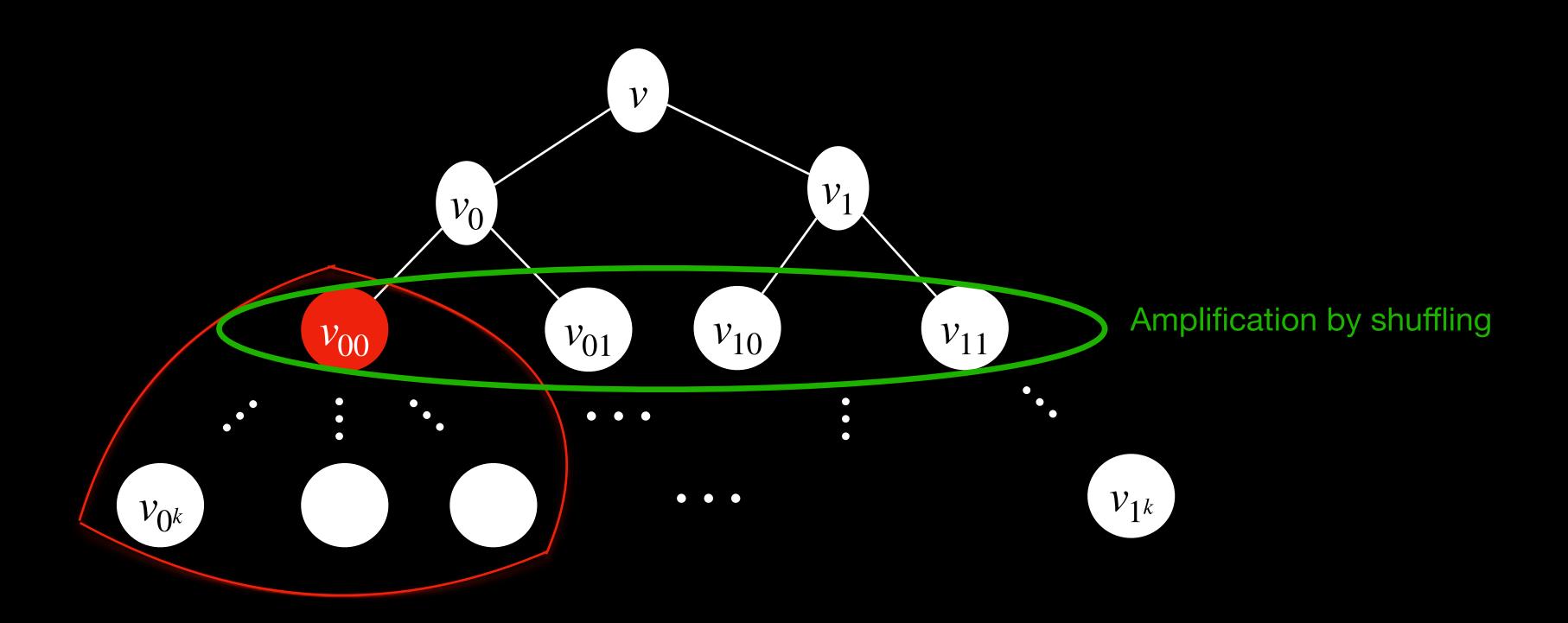


Use parent's gradient to reduce variance at current vertex

$$v_{01} = v_0 + \nabla f(x_k; \mathcal{S}_{01}) - \nabla f(x_{x-1}; \mathcal{S}_{01})$$

Apply FW step on v_k using exponential mechanism

How much noise to add?



Private Variance-Reduced Frank-Wolfe achieves

Excess population risk
$$\sqrt{\frac{\log d}{n}} + \left(\frac{\text{poly}(\log d)}{n\varepsilon}\right)^{2/3}$$

Open Problems

- 1. Linear O(n) complexity for non-smooth DP-SCO?
- 2. Optimal rates for ℓ_p geometry with p > 2?

Thanks!