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Stochastic Convex Optimization (SCO)

Samples where

Convex Parameter Space
Convex loss function

Population loss

Goal: find a solution X € X that minimizes

Excess population risk



Stochastic Convex Optimization (SCO)

Goal: find a solution X € X that minimizes

Excess population risk  f(X) — min f(x)

b= A
Problem is well-understood

2 is unit £, ball
Optimal risk = ——

f is 1-Lipschitz \/;

2 is unit £, ball
IS unit ' | | log d
Optimal risk =
n

f is 1-Lipschitz



Differentially Private Stochastic Convex Optimization (DP-SCO)

Goal: find a solution X € X that minimizes

Excess population risk  f(X) — min f(x)
xed

algorithm is (&, 0)-differentially private

Problem is (relatively) well-understood in £,-Geometry [BFTT19, FKT20]

< is unit £, ball ] \/c_i
Optimal private risk = +
f is 1-Lipschitz \/E ne

This work: what about other geometries?



Private Optimization in ',-Geometry

This work: DP-SCO in ;-Geometry

2 is unit

fis 1-Lipschitz  f(x) = f(») < Ilx = ylI,

1 n
Previous work: [JT14, TTZ15] for empirical loss Js(x) = ; Zf (x5.5))
i=1

Empirical risk:

ne

( poly(log d) )2’3

Population risk: — +
n

ne

d ( poly(log d) >2/3



Our contributions

1. Optimal rates for DP-SCO in £;-geometry (with tight lower bounds)

d
logd N i
ne

n

Non-smooth functions:

Smooth functions:

n ne

log d N (poly(log d) )2/3

2. Optimal rates for DP-SCO in fp—geometry with p € (1,2]

Non-smooth functions: — + — tight lower bounds from [BGN21]

\/;

3. Faster runtime for non-smooth functions in £,-Geometry

[FKT20]: O(n?) Our algorithms: O(n>?)



Comparison to [BGN21]

1. Optimal rates for DP-SCO in £’;-geometry (with tight lower bounds)

log d d

Non-smooth functions: o8 + i

n ne
log d ( poly(log d) )2/3 logd

Smooth functions: +

n ne \/;8

2. Optimal rates for DP-SCO in fp—geometry with p € (1,2]
ﬁ v

Non-smooth functions:

—
\/Z n3bg




Main techniques

Non-smooth case

* Reduction from DP-SCO to strongly convex DP-ERM

 Solve DP-ERM in £; geometry using noisy mirror descent

Smooth case

* Private variance-reduced Frank-Wolfe algorithm

* Binary tree allocation of the samples for variance-reduction



Algorithm for Non-Smooth Functions

Two main ingredients

1. Reduction from DP-SCO to strongly convex DP-ERM

2. Solve DP-ERM using noisy mirror descent



Reduction from DP-SCO to DP-ERM

DP-SCO

minimize the population loss  f(x) = Eg_plf(x;9)]

DP-ERM

1 n
minimize the empirical loss Jx) = ; Zf(x; S;)
i=1

Optimal algorithms for strongly convex DP-ERM give optimal algorithms for DP-SCO



Reduction from DP-SCO to DP-ERM

Based on iterative-localization [FKT20]

[FKT20] use localization to reduce DP-SCO to stable-ERM

Gives optimal rates for £, geometry

Not sufficient for £, geometry

1. At each iteration, privately solve a regularized ERM problem

2. As the output is accurate, shrink diameter and repeat



Reduction from DP-SCO to DP-ERM

1. At each iteration, privately solve a regularized ERM problem

2. As the output is accurate, increase regularization and repeat

(sketch)

1. Initialize x, = 0

2. Fork =1tologn

1 n
Find x;, | by privately solve the ERM problem: — — Zf(x; S)+ Alx—x,_4 &
n
i=1

* Increase regularization A by a factor of 2 (shrinks diameter)



Reduction from DP-SCO to DP-ERM
(sketch)

1. Initialize x, = 0

2. Fork=1tologn

1 n

_ Find x; , | by privately solve the ERM problem:  — E 06 8) + Allx — x4 |17
n
i=1

* Increase regularization A by a factor of 2 (shrinks diameter)

(informal)

| 7)

If algorithm A solves A-strongly convex DP-ERM with rate T nZe2

1 vd
\/Zlne

then the above algorithm has population loss



Noisy Mirror Descent for DP-ERM

1. Initialize x, = 0
2. Fort=1toT
e Add noise to gradient: & =V, f(x;S,) + /V((),az[ld)
. (A 1
o Apply mirror descent step: X4 = argmin{ (g, x) + DX, x,) }

(informal)

1 d

Choosing & according to geometry, Noisy MD obtains excess loss PPy

P :
- use ||x||; withp =1
| geometry: [ x]l; with p log d

£ p geometry: use HxH]% forp > 1



Algorithm for Smooth Functions

Main techniques

* Private variance-reduced Frank-Wolfe algorithm

« Exponential mechanism to apply Frank-Wolfe update (choose from d vertices)

* Binary tree allocation of the samples for variance-reduction



Frank-Wolfe Algorithm

Fort=1to T:

1. w, = argrreliBn (Vf(x),x)
XD

2. Setx, | = (1 —n)x +nw,

Main observation [TTZ15]: the minimizer

Use Exponential mechanism to privately pick best vertex

Empirical risk [TTZ15]:

ne

( poly(log d) )”3

1

Even without privacy, FW achieves only — 3
n



Variance-Reduced Frank-Wolfe Algorithm [YCS19]

(sketch)

e Vo = Vf(xy; &) Where & is a set of n samples
« Fort=1toT:
1.v,=v,_ 1+ Vf(x;5)—Vflx_;; &)

2. w, = argmin (V,, X)
X€B,

3. Setx,.; = (1 —n)x, +nw,

Achieves optimal population risk [YCS19] —



Private Variance-Reduced Frank-Wolfe Algorithm

add noise to privatize v,

samples in & are used in \/E updates!
log d
Results in bounds e




Private Variance-Reduced Frank-Wolfe Algorithm

allocate the samples so that smaller sets are used in less updates

Use parent’s gradient to reduce variance at current vertex

Vor = Vo + V(x5 So1) — VA5 o)



Private Variance-Reduced Frank-Wolfe Algorithm

Use parent’s gradient to reduce variance at current vertex

Vor = Vo + V(x5 So1) — VA5 o)

Apply FW step on v, using exponential mechanism



Private Variance-Reduced Frank-Wolfe Algorithm

@ 00 o
oeoee®  ©

Private Variance-Reduced Frank-Wolfe achieves

2/3
Excess population risk logd (PO'Y(IOg d))

n ne



Open Problems

1. Linear O(n) complexity for non-smooth DP-SCO?

2. Optimal rates for £, geometry with p > 27

Thanks!



