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Stochastic Convex Optimization (SCO)

Samples  where 


Convex Parameter Space  


Convex loss function    


Population loss   


Goal: find a solution  that minimizes 

𝒮 = {S1, S2, …, Sn} Si ∼ P

𝒳 ⊆ ℝd

f(x; S) : 𝒳 × 𝒮 → ℝ

f(x) = 𝔼S∼P[ f(x; S)]

̂x ∈ 𝒳

f( ̂x) − min
x∈𝒳

f(x)Excess population risk



Stochastic Convex Optimization (SCO)

Goal: find a solution  that minimizes 
̂x ∈ 𝒳

f( ̂x) − min
x∈𝒳

f(x)Excess population risk

Problem is well-understood


 is unit  ball𝒳 ℓ2

  is 1-Lipschitzf

 is unit  ball𝒳 ℓ1

  is 1-Lipschitzf
Optimal risk = 


log d
n

wrt  normℓ1 f(x) − f(y) ≤ ∥x − y∥1

1

n
Optimal risk = 




Differentially Private Stochastic Convex Optimization (DP-SCO)

Additional constraint: algorithm is -differentially private
(ε, δ)

Problem is (relatively) well-understood in -Geometry [BFTT19, FKT20]
ℓ2

1

n
+

d
nε

Optimal private risk = 

 is unit  ball𝒳 ℓ2

  is 1-Lipschitzf

This work: what about other geometries?

Goal: find a solution  that minimizes 
̂x ∈ 𝒳

f( ̂x) − min
x∈𝒳

f(x)Excess population risk



Private Optimization in -Geometryℓ1

This work: DP-SCO in -Geometry
ℓ1

 is unit  ball𝒳 ℓ1

  is 1-Lipschitzf f(x) − f(y) ≤ ∥x − y∥1

Previous work: [JT14, TTZ15] for empirical loss
 f𝒮(x) =
1
n

n

∑
i=1

f(x; Si)

Empirical risk: ( 𝗉𝗈𝗅𝗒(log d)
nε )

2/3

Population risk: d
n

+ ( 𝗉𝗈𝗅𝗒(log d)
nε )

2/3



Our contributions

1. Optimal rates for DP-SCO in -geometry (with tight lower bounds)
ℓ1

Non-smooth functions:
log d

n
+

d
nε

Smooth functions:
log d

n
+ ( 𝗉𝗈𝗅𝗒(log d)

nε )
2/3

2.  Optimal rates for DP-SCO in -geometry with 
ℓp p ∈ (1,2]

Non-smooth functions:
1

n
+

d
nε tight lower bounds from [BGN21]

3.  Faster runtime for non-smooth functions in -Geometry
ℓ2

[FKT20]: O(n2) Our algorithms: O(n3/2)

smoothness helps in  geometryℓ1

Privacy for free even when

    and       d ≫ n ε ≈ 1
n1/4



Comparison to [BGN21]

1.  Optimal rates for DP-SCO in -geometry (with tight lower bounds)
ℓ1

Non-smooth functions:

Smooth functions:

2.  Optimal rates for DP-SCO in -geometry with 
ℓp p ∈ (1,2]

Non-smooth functions:

[BGN21]
log d

nε

[BGN21] d
n3/4ε

log d
n

+
d

nε

log d
n

+ ( 𝗉𝗈𝗅𝗒(log d)
nε )

2/3

1

n
+

d
nε



Main techniques
Non-smooth case

• Reduction from DP-SCO to strongly convex DP-ERM


• Solve DP-ERM in  geometry using noisy mirror descentℓ1

Smooth case

• Private variance-reduced Frank-Wolfe algorithm


• Binary tree allocation of the samples for variance-reduction



Algorithm for Non-Smooth Functions

Two main ingredients

1. Reduction from DP-SCO to strongly convex DP-ERM


2. Solve DP-ERM using noisy mirror descent



Reduction from DP-SCO to DP-ERM

f(x) = 𝔼S∼P[ f(x; S)]

DP-SCO

minimize the population loss

DP-ERM

f(x) =
1
n

n

∑
i=1

f(x; Si)minimize the empirical loss

Optimal algorithms for strongly convex DP-ERM give optimal algorithms for DP-SCO



Reduction from DP-SCO to DP-ERM

Based on iterative-localization [FKT20]

1. At each iteration, privately solve a regularized ERM problem


2. As the output is accurate, shrink diameter and repeat

Idea:

[FKT20] use localization to reduce DP-SCO to stable-ERM

Gives optimal rates for  geometryℓ2

Not sufficient for  geometryℓ1



Reduction from DP-SCO to DP-ERM

1. At each iteration, privately solve a regularized ERM problem


2. As the output is accurate, increase regularization and repeat

Idea:

1. Initialize 


2. For  to    


• Find  by privately solve the ERM problem:      


• Increase regularization  by a factor of 2 (shrinks diameter)

x0 = 0

k = 1 log n

xk+1
1
n

n

∑
i=1

f(x; Si) + λ∥x − xk−1∥2

λ

Algorithm (sketch)



Reduction from DP-SCO to DP-ERM
Algorithm (sketch)

Main claim (informal)

If algorithm  solves -strongly convex DP-ERM with rate  𝖠 λ
1
λn

+
d

λn2ε2

then the above algorithm has population loss 
1

n
+

d
nε

1. Initialize 


2. For  to    


• Find  by privately solve the ERM problem:      


• Increase regularization  by a factor of 2 (shrinks diameter)

x0 = 0

k = 1 log n

xk+1
1
n

n

∑
i=1

f(x; Si) + λ∥x − xk−1∥2

λ



Noisy Mirror Descent for DP-ERM

1. Initialize 


2. For  to    


• Add noise to gradient: 


• Apply mirror descent step:

x0 = 0

t = 1 T

Noisy Mirror Descent

̂gt = ∇x f(xt; St) + 𝒩(0,σ2𝕀d)

xt+1 = arg min{ ⟨ ̂gt, x⟩ + 1
η Dh(x, xt) }

 geometry: ℓ1 use  with   ∥x∥2
p p = 1 +

1
log d

 geometry: ℓP use   for   ∥x∥2
p p > 1

Claim (informal)

Choosing  according to geometry, Noisy MD obtains excess lossh
1
λn

+
d

λn2ε2



Algorithm for Smooth Functions

Main techniques

• Private variance-reduced Frank-Wolfe algorithm


• Exponential mechanism to apply Frank-Wolfe update (choose from  vertices)


• Binary tree allocation of the samples for variance-reduction

d



Frank-Wolfe Algorithm

For  to  :


1. 


2. Set 

t = 1 T

wt = arg min
x∈𝖡1

⟨ ∇f(xt) , x ⟩

xt+1 = (1 − η)xt + ηwt

Frank-Wolfe

Main observation [TTZ15]: the minimizer  is a vertex of the  ballwt ℓ1

Use Exponential mechanism to privately pick best vertex

Empirical risk [TTZ15]: ( 𝗉𝗈𝗅𝗒(log d)
nε )

2/3

What about population risk?

Even without privacy, FW achieves only
1

n1/3



Variance-Reduced Frank-Wolfe Algorithm [YCS19]

•  where  is a set of  samples


• For  to  :


1.  


2.  


3.  Set 

v0 = ∇f(x0; 𝒮0) 𝒮0 n

t = 1 T

vt = vt−1 + ∇f(xt; 𝒮t) − ∇f(xt−1; 𝒮t)

wt = arg min
x∈𝖡1

⟨vt , x⟩

xt+1 = (1 − η)xt + ηwt

Variance-Reduced Frank-Wolfe (sketch)

|𝒮k | ≈ n

T ≈ n

Achieves optimal population risk [YCS19]
1

n

use it for DP-SCO?



Private Variance-Reduced Frank-Wolfe Algorithm

Attempt 1: add noise to privatize vk

Results in sub-optimal bounds 
log d

nε

Problem: samples in  are used in  updates!𝒮1 n



Private Variance-Reduced Frank-Wolfe Algorithm

Main idea: allocate the samples so that smaller sets are used in less updates

|𝒮0 | = n

|𝒮1 | =
n
2

|𝒮2 | =
n
4

v

v0

v00

v1

v01 v11v10

v0k v1k…
⋮ ⋮⋮ ⋮

|𝒮k | = n

Use parent’s gradient to reduce variance at current vertex

v01 = v0 + ∇f(xk; 𝒮01) − ∇f(xx−1; 𝒮01)

⋮



Private Variance-Reduced Frank-Wolfe Algorithm

v

v0
v1

v01 v11v10

v1k

v00

v0k
…

⋮ ⋮⋮ ⋮⋮ …

Use parent’s gradient to reduce variance at current vertex

v01 = v0 + ∇f(xk; 𝒮01) − ∇f(xx−1; 𝒮01)

|𝒮0 | = n

|𝒮1 | =
n
2

|𝒮2 | =
n
4

|𝒮k | = n

⋮

Apply FW step on  using exponential mechanism vk

How much noise to add?



Private Variance-Reduced Frank-Wolfe Algorithm

v

v0
v1

v01 v11v10

v1k

v00

v0k
…

⋮ ⋮⋮ ⋮⋮ …
Amplification by shuffling

log d
n

+ ( 𝗉𝗈𝗅𝗒(log d)
nε )

2/3

Private Variance-Reduced Frank-Wolfe achieves

Excess population risk



Open Problems

1. Linear  complexity for non-smooth DP-SCO?


2. Optimal rates for  geometry with ?

O(n)

ℓp p > 2

Thanks!


