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Byzantine robust
learning



Federated learning

e Each worker i computes
stochastic gradient at x and
sends to server




Federated learning
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\ e Server accumulates gradients
and computes new parameters
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Byzantine robust learning

g91(x)

o
= B

We protect against worst-case:

Newte)

Small fraction (&) of workers
may send arbitrary updates

They are omniscient and can
collude

They want to derail
convergence



Failure of current
aggregators



r=x —nAgg(gi,...,9n)
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Replace Avg with different
aggregator

Examples:

Coordinate-wise median
[Yin et al. 2017]

Krum [Blanchard et al. 2018]

Geometric median / RFA
[Pillutla et al. 2019]



Simplest is perhaps coordinate wise
median [Yin et al. 2018]

Kth coordinate is computed as:

[CM(gla S 7gn)]k
= median(|g1]g,-- -, |9nlk)




: theoretical failure

Consider all correct outputs
(+1, -1, +1, -1, +1, ..., -1) [

[CM(gla---vgn)]k }
)

= median([g1]k, - - -, [9n]k

Correct Avg is 0

Median outputs +1



Consider all correct outputs

(+1,-1,+1,-1,+1, ..., -1)

Correct Avg is 0

Median outputs +1

CM, Krum, RFA all fail in more
general settings
(see paper for theory)

: theoretical failure

[CM(gla R gn)]k
= median([g1]x, - - -, [9n]k)
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We construct long-tailed MNIST
dataset

75% accuracy corresponds to
learning only class 1 & 2 and
ignoring all others.

. experimental failure

Accuracy (%)
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Aggr
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lterations
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Necessity of history



Necessity of history: ideal update
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Necessity of history: approximate update

e Suppose, we successfully
defend Byzantine attacks with
smaller error e
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. approximate update

e Attacks can be coupled
across time

e Error e adds up over time

e Eventually, leads to large
divergence
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: theorem

Impossible to avoid for any algorithm which is ‘memory-less’:

/Theorem: For a p-strongly convex function, the output x
of any memory-less algorithm necessarily has an error:
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Necessity of history: experiment

ATK = ALIE

o “Alittle is enough” (ALIE)
attacks on normal MNIST.

e Dotted line is ideal accuracy

Accuracy (%)

e All aggregators (solid lines)
have 20--60% drop in
accuracy




Robust aggregator:
centered clipping



new definition

ﬁ’max , ¢)-robust aggregator: \ e If =0, then erroris 0

Median is not a robust aggregator.
Ford <d__ ,suppose (1-8) fraction of inputs are

good and satisfy 9 9
EHCUZ e x]” < P e If =0, then erroris 0

Then, the output of the aggregator x°“t= Agg

e Turns out this is best we can do

\ﬁg,...., X ) satisfies ]Eonut N 53”2 S (35,02 / (see paper)
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Robust aggregator: centered clipping

o Suppose we are give some inputs
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Robust aggregator: centered clipping

® Suppose we are give some inputs

And a “‘guess’ v,
O
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Robust aggregator: centered clipping
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centered clipping

Suppose we are give some inputs

And a “guess” v,

And clipping threshold 7.

Clip all values from guess to
clipping threshold and average
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centered clipping

Clip all values from guess to
clipping threshold and average

1 n
) =v+—Y clip.(g —
v+~ ;ZlmpT(g v)
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theory

-

Theorem. Given a good starting point v,
centered clipis a (8 __ , c) robust
aggregator for  _ =0.15and ¢ = O(1).
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1 n
CC(g1,. - Gn) = v + — lip. (g; —
: 0 5 Do clip

v)
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. experiment

Long-tailed MNIST dataset 100

= 80-__/_(______ class 1&2

- |

% 60 A
Centered clip beats all other 5 —g%rc
methods S - M

< 40- —— RFA

e Krum
200 400 600 800

For guess v, use aggregate lterations

output of previous round
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Time coupled attacks:
worker momentum



momentum

Simply use worker momentum

m; = (1 — B)g; + fm;

Effectively averages past gradients, reducing variance

Aggregate worker momentums instead of gradients

r=1x—nAgg(my,...,mny)
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convergence theory

ﬁ heorem: Given any (&__ , c) robust aggregator, anc@
Byzantine robust problem with 8-fraction attackers and o?
variance, our algorithm outputs x°“t s.t.

T

2 1
BV <0 (4[5 (5+7)
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. experiment

ATK = ALIE

“Alittle is enough” (ALIE) AGG
attacks on normal MNIST 80 T
with 0.99 momentum 3 “ —  RFA

> — TM
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3 40 — CC

< —— AVG
Centered Clip + 20 6=0
momentum=0.99 —— False
matches ideal performance 0 20 40 60 80 106 True

Epochs
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Surprising failures can hide under assumptions

Need to use history for Byzantine robustness

Centered clipping with worker momentum provably
and practically defends against Byzantine attacks
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