Generative Video Transformer: Can Objects be the Words?

Yi-Fu Wu¹, Jaesik Yoon^{1,2}, Sungjin Ahn¹

¹Rutgers University, ²SAP

Motivation

BERT (Devlin et al., 2019)

GPT (Radford et al., 2018)

• Can a transformer-based architecture be effective for generative pretraining of visual scenes for video generation and understanding?

Previous Work

Local 2D Attention

Parmer et al., 2018

Parmer et al., 2018

1	\square	_				_									
															Γ
1	\square	_			_	_									L
+	\square	_			4	_	_								
							_	⊢		-				_	L
								⊢		-	-	-		-	⊢
+	H	+	+	+	+	-	-	⊢	-	⊢	-		-	-	⊢
t	H	+	+	+	+	-	-	⊢		⊢	\vdash		\vdash	-	⊢
t	Ħ	+	+	+	+	-	-	\vdash		-			\vdash		H

Ho et al., 2019

Child et al., 2019

Chen et al., 2020

Dosovitskiy et al., 2021

Our Approach

• Tokenize an image into its consitutent object representations and use these representations as input to the transformer

Our Approach

- Predict the entire image at once by generating all the objects in an image simultaneously given their previous states
- Align objects between frames based on object location, leveraging SPACE (*Lin et al., 2020*) an unsupervised object representation model that outputs explicit bounding box information

Object-Centric Video Transformer

Experiments - Datasets

• Bouncing balls

Experiments – Bouncing Ball

	Mod1	Mod2	Mod3	Mod1234
GSWM	71.69	17.51	14.63	11.72
LSTM+GNN	73.64	69.08	22.30	51.38
SVVT	37.53	18.23	11.96	29.47
CONVVT	88.31	82.83	46.49	67.29
CONVVT-AR	8.70	4.20	3.25	6.10
OCVT-AR	78.70	76.99	54.49	64.97
OCVT (OURS)	89.61	88.18	82.70	78.43

Table 1. Average next-step prediction color change accuracy

Ground Truth Generation

Figure 5. Forced Generation Accuracy

Experiments - CATER

	Top 1 ↑	Top 5 ↑	L1↓
DING ET AL	70.6	93.0	0.53
DING ET AL W/ LI Hopper	74.0	94.0 93.8	$0.44 \\ 0.85$
OPNET	74.8	-	0.54
OCVT (OURS) OCVT w/ L1 (OURS)	76.0 75.9	94.4 95.3	0.45 0.39

Table 2. CATER results

Conclusion

- OCVT is able to generate future frames of videos with complex long-term dependencies
- Learned representations are useful for downstream tasks
- Please refer to our paper for more details