

On a Combination of Alternating Minimization and

 Nesterov's MomentumSergey Guminov, Pavel Dvurechensky, Nazarii Tupitsa, Alexander Gasnikov

International Conference on Machine Learning 2021

- $\hat{r}_{u i}$ - unknown ratings for user u and item i

■ Structural assumption: $\hat{r}_{u i}=x_{u}{ }^{\top} y_{i}+$ noise

- Partial observations $r_{u i}$
x and y are found from optimization problem:

$$
\min _{x, y} F(x, y)=\sum_{\text {observed } u, i} c_{u i}\left(r_{u i}-x_{u}^{\top} y_{i}\right)^{2}+\alpha \sum_{u}\left\|x_{u}\right\|_{2}^{2}+\alpha \sum_{i}\left\|y_{i}\right\|_{2}^{2}
$$

- Easy alternating minimization (AM):
explicit minimization in x for fixed y and vice versa.
- Non-convex problem.

■ Two blocks of variables.

Given two histograms $a, b \in S_{n}(1)$ and a cost matrix $C \in \mathbb{R}_{+}^{n \times n}$ solve the entropy-regularized optimal transport (OT) problem:

$$
\begin{array}{cc}
\text { Primal problem: } & \min _{X \in \mathcal{U}(a, b)}\langle C, X\rangle+\gamma\langle X, \ln X\rangle, \\
& \mathcal{U}(a, b):=\left\{X \in \mathbb{R}_{+}^{n \times n}: X \mathbf{1}=a, X^{T} \mathbf{1}=b\right\} \\
\text { Dual problem: } & \min _{u, v \in \mathbb{R}^{n}}\left\{\ln \left(\left(e^{u}\right)^{\top} e^{-C / \gamma} e^{v}\right)-\langle u, a\rangle-\langle v, b\rangle\right\}
\end{array}
$$

- Strongly convex linearly-constrained primal, smooth convex dual.
- Easy AM in the dual: explicit minimization in u for fixed v, two blocks.
- Sinkorn's algorithm as AM in the dual, rate is proportional to $1 / k$.
- Accelerated Gradient Method (AGM) in the dual has rate proportional to $1 / k^{2}$.
- Primal-dual analysis needed to find the primal variable X.

Can we combine Alternating Minimization and Nesterov's (Momentum) Accelerated Gradient Method?

Desired properties: analysis for non-convex problems (Collaborative Filtering), primal-dual analysis (Entropic Optimal Transport), many blocks, parameter-free: no need to know Lipschitz constant, etc.

	P-F	Acc.	N-C	P-D	B-N
AM (Beck \& Tetruashvili, 2013; Beck, 2015)	$\sqrt{ }$	\times	\times	\times	2
AM (Saha \& Tewari, 2013; Sun \& Hong, 2015)	$\sqrt{ }$	\times	\times	\times	any
ACD (Nesterov, 2012; Lee \& Sidford, 2013;	\times	$\sqrt{ }$	\times	$\sqrt{ }$	any
Fercoq \& Richtárik,2015) and many others					
AAR-BCD (Diakonikolas \& Orecchia, 2018)	\times	$\sqrt{ }$	\times	\times	any
AAM (Diakonikolas \& Orecchia, 2018)	$\sqrt{ }$	$\sqrt{ }$	\times	\times	2
This paper	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	any

$$
\min _{\lambda \in \mathbb{R}^{N}} \varphi(\lambda)
$$

Examples of φ :
■ non-convex objective in collaborative filtering;

- convex dual objective in the entropic OT.

Definitions and assumptions:

- n blocks $I_{p}, p \in\{1, \ldots, n\}$.

■ Block minimization: we can solve

$$
\min _{\lambda}\left\{\varphi(\lambda): \lambda \in S_{p}(\zeta):=\left\{\zeta+\operatorname{span}\left\{e_{i}: i \in I_{p}\right\}\right\}\right\}
$$

■ $\varphi(\lambda)$ is L_{φ}-smooth: $\forall \lambda, \eta \in \mathbb{R}^{N} \quad\|\nabla \varphi(\lambda)-\nabla \varphi(\eta)\|_{2} \leqslant L_{\varphi}\|\lambda-\eta\|_{2}$.
■ Notation: λ_{i} - components of λ corresponding to the block i and $\nabla_{i} \varphi(\lambda)$ - gradient corresponding to the block i.

1: $\beta_{0}=\alpha_{0}=0, \eta_{0}=\zeta_{0}=\lambda_{0}=0$.
2: $\mathbf{f o r} k \geqslant 0$ do
3: [Coupling step]

$$
\text { Set } \lambda_{k}=\tau_{k} \zeta_{k}+\left(1-\tau_{k}\right) \eta_{k}, \tau_{k}=\arg \min _{\tau \in[0,1]} \varphi\left(\eta_{k}+\tau\left(\zeta_{k}-\eta_{k}\right)\right)
$$

4: [Gauss-Southwell] Choose $i_{k}=\arg \max _{i \in\{1, \ldots, n\}}\left\|\nabla_{i} \varphi\left(\lambda_{k}\right)\right\|_{2}^{2}$.
5: [Block Minimization] Set $\eta_{k+1}=\arg \min _{\eta \in S_{i_{k}}\left(\lambda_{k}\right)} \varphi(\eta)$. (instead of gradient step)
6: Find $\alpha_{k+1}, \beta_{k+1}:=\beta_{k}+\alpha_{k+1}$ from

$$
\varphi\left(\lambda_{k}\right)-\frac{\alpha_{k+1}^{2}}{2\left(\beta_{k}+\alpha_{k+1}\right)}\left\|\nabla \varphi\left(\lambda_{k}\right)\right\|_{2}^{2}=\varphi\left(\eta_{k+1}\right)
$$

7: [Update momentum] Set $\zeta_{k+1}=\zeta_{k}-\alpha_{k+1} \nabla \varphi\left(\lambda_{k}\right)$.
8: \quad [Optional primal update] Set $\hat{x}_{k+1}=\frac{\alpha_{k+1} x\left(\lambda_{k}\right)+\beta_{k} \hat{x}_{k}}{\beta_{k+1}}$.
9 : end for
Ensure: η_{k+1} and optional \hat{x}_{k+1}.

1: $\beta_{0}=\alpha_{0}=0, \eta_{0}=\zeta_{0}=\lambda_{0}=0$.
2: $\mathbf{f o r} k \geqslant 0$ do
3: [Coupling step] Set $\lambda_{k}=\tau_{k} \zeta_{k}+\left(1-\tau_{k}\right) \eta_{k}$,

$$
\tau_{k}=\arg \min _{\tau \in[0,1]} \varphi\left(\eta_{k}+\tau\left(\zeta_{k}-\eta_{k}\right)\right)
$$

4: [Gauss-Southwell] Choose $i_{k}=\arg \max _{i \in\{1, \ldots, n\}}\left\|\nabla_{i} \varphi\left(\lambda_{k}\right)\right\|_{2}^{2}$.
5: [Block Minimization]

Set $\eta_{k+1}=\arg \min _{\eta \in S_{i_{k}}\left(\lambda_{k}\right)} \varphi(\eta)$. (instead of gradient step)
6: Find $\alpha_{k+1}, \beta_{k+1}:=\beta_{k}+\alpha_{k+1}$ from

$$
\varphi\left(\lambda_{k}\right)-\frac{\alpha_{k+1}^{2}}{2\left(\beta_{k}+\alpha_{k+1}\right)}\left\|\nabla \varphi\left(\lambda_{k}\right)\right\|_{2}^{2}=\varphi\left(\eta_{k+1}\right)
$$

7: [Update momentum] Set $\zeta_{k+1}=\zeta_{k}-\alpha_{k+1} \nabla \varphi\left(\lambda_{k}\right)$.
8: [Optional primal update] Set $\hat{x}_{k+1}=\frac{\alpha_{k+1} x\left(\lambda_{k}\right)+\beta_{k} \hat{x}_{k}}{\beta_{k+1}}$.
9: end for
Ensure: η_{k+1} and optional \hat{x}_{k+1}.

1: $\beta_{0}=\alpha_{0}=0, \eta_{0}=\zeta_{0}=\lambda_{0}=0$.
2: for $k \geqslant 0$ do
3: [Coupling step] Set $\lambda_{k}=\tau_{k} \zeta_{k}+\left(1-\tau_{k}\right) \eta_{k}$,
$\tau_{k}=\arg \min _{\tau \in[0,1]} \varphi\left(\eta_{k}+\tau\left(\zeta_{k}-\eta_{k}\right)\right)$
4: [Gauss-Southwell] Choose $i_{k}=\arg \max _{i \in\{1, \ldots, n\}}\left\|\nabla_{i} \varphi\left(\lambda_{k}\right)\right\|_{2}^{2}$.
5: [Block Minimization] Set $\eta_{k+1}=\arg \min _{\eta \in S_{i_{k}}\left(\lambda_{k}\right)} \varphi(\eta)$. (instead of gradient step)
6: Find $\alpha_{k+1}, \beta_{k+1}:=\beta_{k}+\alpha_{k+1}$ from

$$
\varphi\left(\lambda_{k}\right)-\frac{\alpha_{k+1}^{2}}{2\left(\beta_{k}+\alpha_{k+1}\right)}\left\|\nabla \varphi\left(\lambda_{k}\right)\right\|_{2}^{2}=\varphi\left(\eta_{k+1}\right)
$$

7: [Update momentum]

$$
\operatorname{Set} \zeta_{k+1}=\zeta_{k}-\alpha_{k+1} \nabla \varphi\left(\lambda_{k}\right)
$$

8: [Optional primal update] Set $\hat{x}_{k+1}=\frac{\alpha_{k+1} x\left(\lambda_{k}\right)+\beta_{k} \hat{x}_{k}}{\beta_{k+1}}$.
9: end for
Ensure: η_{k+1} and optional \hat{x}_{k+1}.

1: $\beta_{0}=\alpha_{0}=0, \eta_{0}=\zeta_{0}=\lambda_{0}=0$.
2: $\boldsymbol{f o r} k \geqslant 0$ do
3: \quad [Coupling step] Set $\lambda_{k}=\tau_{k} \zeta_{k}+\left(1-\tau_{k}\right) \eta_{k}$,

$$
\tau_{k}=\arg \min _{\tau \in[0,1]} \varphi\left(\eta_{k}+\tau\left(\zeta_{k}-\eta_{k}\right)\right)
$$

4: [Gauss-Southwell] Choose $i_{k}=\arg \max _{i \in\{1, \ldots, n\}}\left\|\nabla_{i} \varphi\left(\lambda_{k}\right)\right\|_{2}^{2}$.
5: [Block Minimization] Set $\eta_{k+1}=\arg \min _{\eta \in S_{i_{k}}\left(\lambda_{k}\right)} \varphi(\eta)$. (instead of gradient step)
6: \quad Find $\alpha_{k+1}, \beta_{k+1}:=\beta_{k}+\alpha_{k+1}$ from

$$
\varphi\left(\lambda_{k}\right)-\frac{\alpha_{k+1}^{2}}{2\left(\beta_{k}+\alpha_{k+1}\right)}\left\|\nabla \varphi\left(\lambda_{k}\right)\right\|_{2}^{2}=\varphi\left(\eta_{k+1}\right)
$$

7: [Update momentum] Set $\zeta_{k+1}=\zeta_{k}-\alpha_{k+1} \nabla \varphi\left(\lambda_{k}\right)$.
8: [Optional primal update]

Set $\hat{x}_{k+1}=\frac{\alpha_{k+1} x\left(\lambda_{k}\right)+\beta_{k} \hat{x}_{k}}{\beta_{k+1}}$.

9: end for

Ensure: η_{k+1} and optional \hat{x}_{k+1}.

Convex setting:

$$
\varphi\left(\eta_{k}\right)-\varphi\left(\lambda^{*}\right) \leq \frac{2 n L_{\varphi}\left\|\lambda_{0}-\lambda^{*}\right\|_{2}^{2}}{k^{2}}=O\left(\frac{n}{k^{2}}\right)
$$

Non-convex setting:

$$
\min _{i=0, \ldots, k}\left\|\nabla \varphi\left(\lambda_{i}\right)\right\|_{2}^{2} \leqslant \frac{2 n L_{\varphi}\left(\varphi\left(\lambda_{0}\right)-\varphi\left(\lambda^{*}\right)\right)}{k}=O\left(\frac{n}{k}\right)
$$

Automatic adaptation to convexity and smoothness constant.
Prinal-dual setting:
Primal objective f is γ-strongly convex, dual solution $\left\|\lambda^{*}\right\|_{2} \leq R$.

$$
\begin{aligned}
& f\left(\hat{x}_{k}\right)-f^{*} \leq f\left(\hat{x}_{k}\right)+\varphi\left(\eta_{k}\right) \leq \frac{4 n L_{\varphi} R^{2}}{k^{2}}=\frac{8 n\|A\|_{E \rightarrow H}^{2} R^{2}}{\gamma k^{2}}=O\left(\frac{n}{\gamma k^{2}}\right) \\
& \left\|A \hat{x}_{k}-b\right\|_{2} \leq \frac{8 n\|A\|_{E \rightarrow H}^{2} R}{\gamma k^{2}}=O\left(\frac{n}{\gamma k^{2}}\right)
\end{aligned}
$$

Thank you!

More details in the paper:

- Numerical experiments
- State-of-the-art complexity for Optimal Transport and Barycenters

