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Vision-and-Language Tasks
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Task-specific Architecture / Objective
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Task-specific Architecture / Objective

Visual Question Answering Visual Grounding

Can we tackle all V&L tasks

with single objective?
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V&L Tasks as Text Generation
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V&L Tasks as Text Generation
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V&L Tasks as Text Generation
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V&L Tasks as Text Generation
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V&L Tasks as Text Generation
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Comparable to Baselines on Downstream Tasks

Table 2. Single model performance on downstream tasks. Note that the baseline models adopt task-specific objectives and architectures,
whereas our models tackle all tasks, including discriminative tasks (e.g., RefCOCOQOg), as text generation with a single architecture and
objective. x See our discussion in Sec.5.3.

4 Discriminative tasks Generative tasks
Method Pretrain VQA GQA NLVR? RefCOCOg VCRQ— AR COCOCap Multi30K En-De
Images test-std test-std  test-P test? test Karpathy test test 2018
Acc Acc Acc Acc Acc CIDEr BLEU
LXMERT 180K 72.5 60.3 74.5 - - - -
ViLBERT 3M 70.9 - - - 54.8 - -
UNITER g, ¢ 4M 72.9 - 77.9 74.5 58.2 -
Unified VLP 3M 70.7 - - - - 117.7 -
Oscarg,qe 4M 73.4 61.6 78.4 - - 123.7 -
XGPT 3M - - - - - 120.1 -
MeMAD - - - - - - - 38.5
0 del VL-T5 180K 70.3 60.8 73.6 71.3 58.9 116.5 38.6
ur modaels VL-BART 180K 713 605 703 20.4* 48.9 116.6 28.1
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Better Generalization on Rare Answers

Table 3. VQA Karpathy-test split accuracy using generative and
discriminative methods. We break down the questions into two
subsets in terms of whether the best-scoring answer a™ for each

question is included in the top-K answer candidates AP*. In-
domain: a* € AP* Out-of-domain: a* ¢ AtoPR

Method In-domain Out-of-domain Overall
Discriminative

UNITERR,. 74.4 10.0 70.5
VL-T5 70.2 7.1 66.4
VL-BART 69.4 7.0 65.7
Generative

VL-T5 71.4 13.1 67.9
VL-BART 72.1 13.2 68.6
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Better Generalization on Rare Answers
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Multi-task Learning with Single Set of Parameters

Table 9. Single-task vs. Multi-task finetuning results on 7 tasks. With a single set of parameters, our multi-task model achieves similar
performance to separately optimized single-task models. We denote the number of parameters of single VL-TS model as P.

f \ Discriminative tasks Generative tasks
Method F“gt‘ll(“mg # Params VQA GQA NLVR? RefCOCOg VCR COCO Caption Multi30K En-De
SKS Karpathy test test-dev  test-P test? val Karpathy test test2018
Acc Acc Acc Acc Acc CIDEr BLEU
VL-T5 single task 7P 67.9 60.0 73.6 71.3 57.5 116.1 38.6
VL-T5 all tasks \ P 4 67.2 58.9 71.6 69.4 55.3 110.8 37.6

Similar performance with fewer parameters
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Thanks!

Code: https://github.com/j-min/VL-T5

Jaemin Cho, Jie Lei, Hao Tan, Mohit Bansal

{imincho, jielei, haotan, mbansal}@cs.unc.edu
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