Unifying Vision-and-Language Tasks via Text Generation

Jaemin Cho

Jie Lei

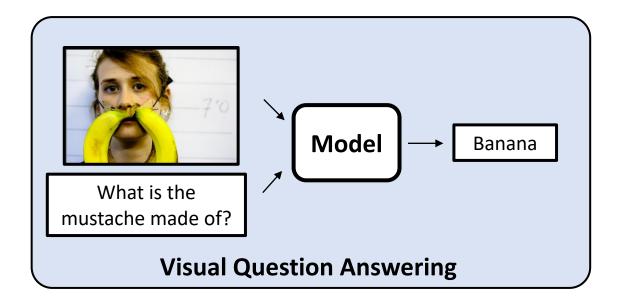


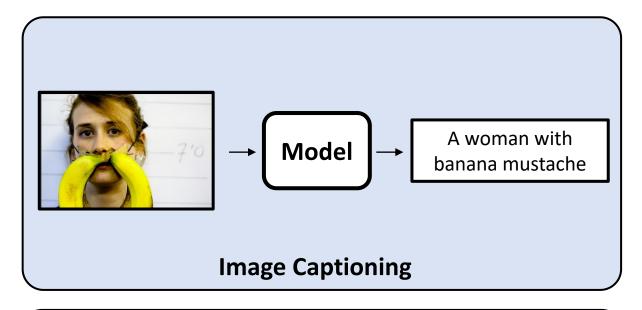
Hao Tan

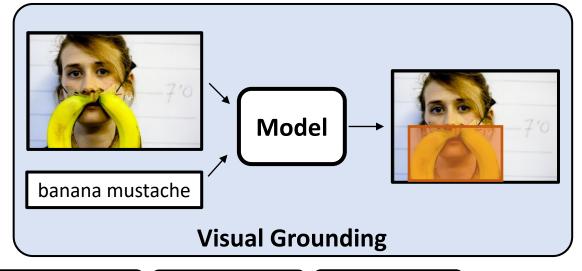
Mohit Bansal

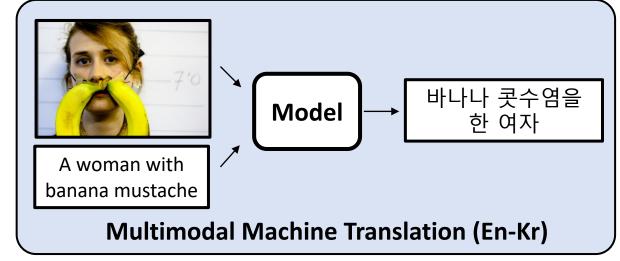
MURGe-Lab @ UNC Chapel Hill

Vision-and-Language Tasks

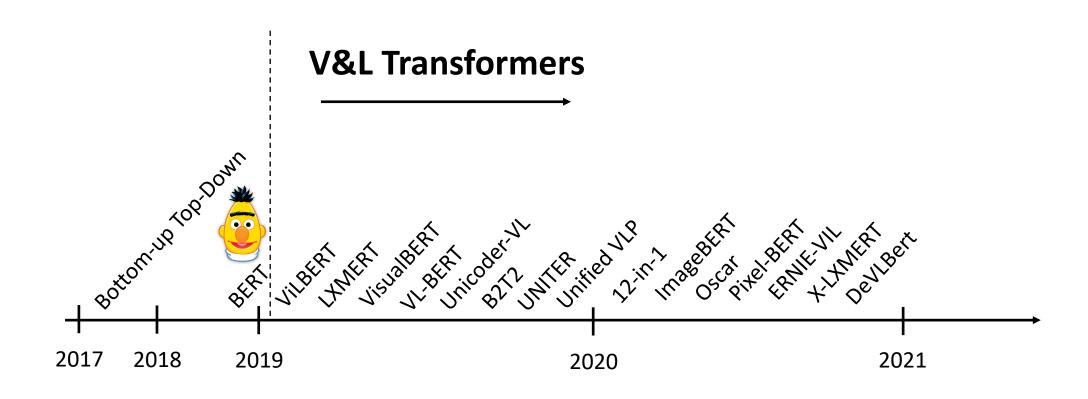








Vision-and-Language Pretraining

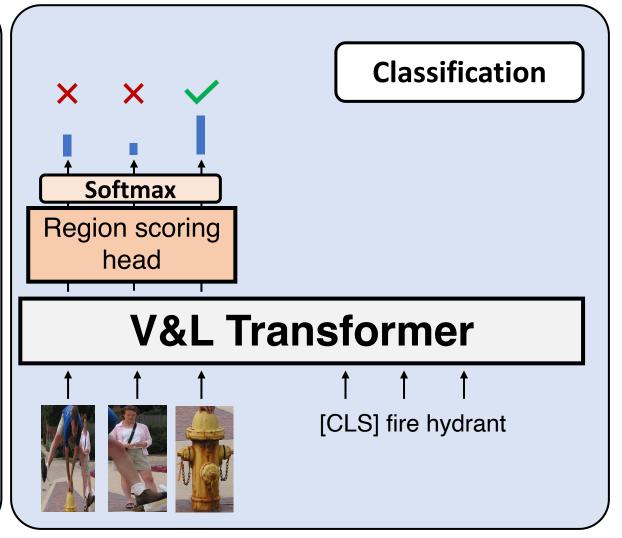


Task-specific Architecture / Objective

Visual Question Answering

"fire hydrant" Multi-label Classification Top-K answer scores Sigmoid **VQA** head **V&L Transformer** [CLS] What is the man jumping over?

Visual Grounding



Background

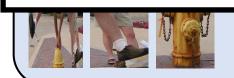
Method

Task-specific Architecture / Objective

Visual Question Answering

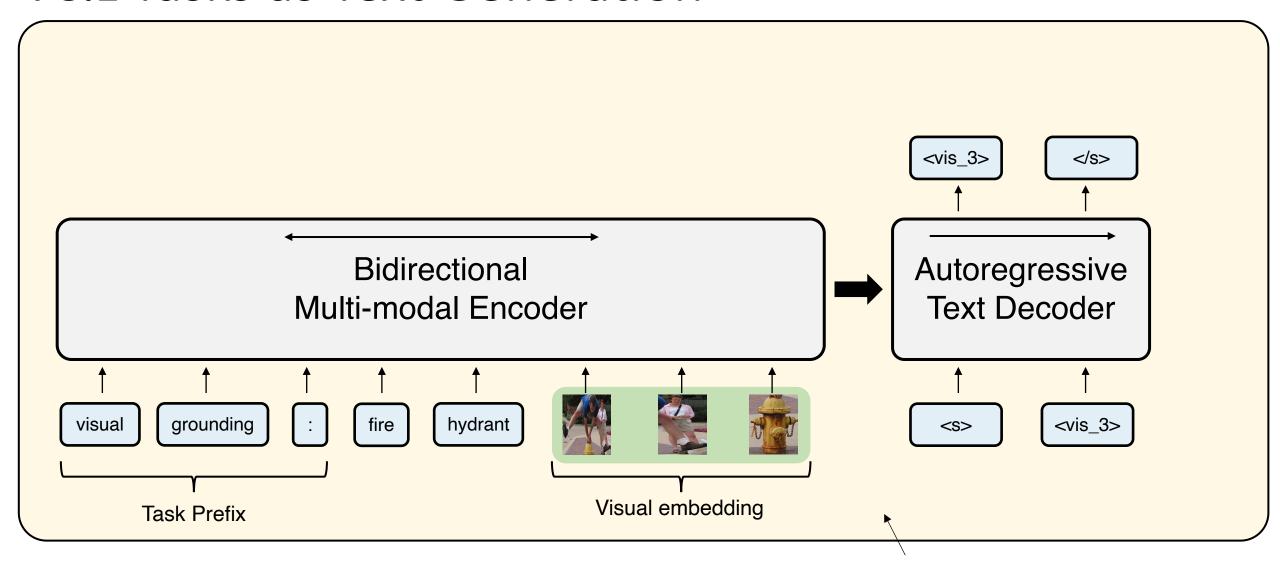
Visual Grounding

Can we tackle all V&L tasks with single objective?

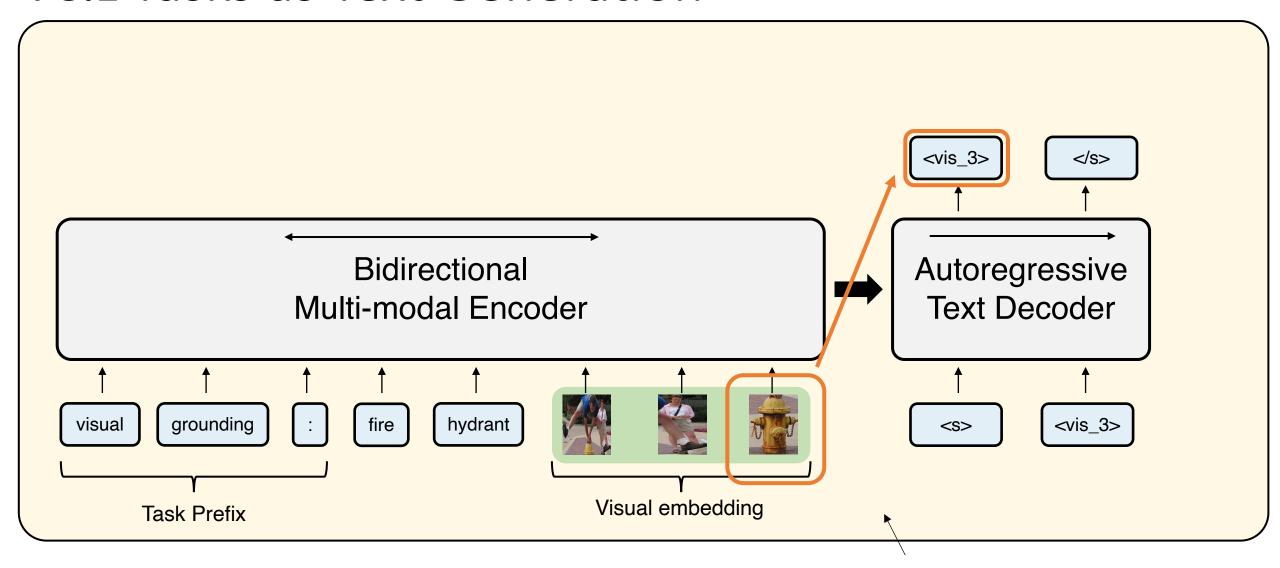


Background

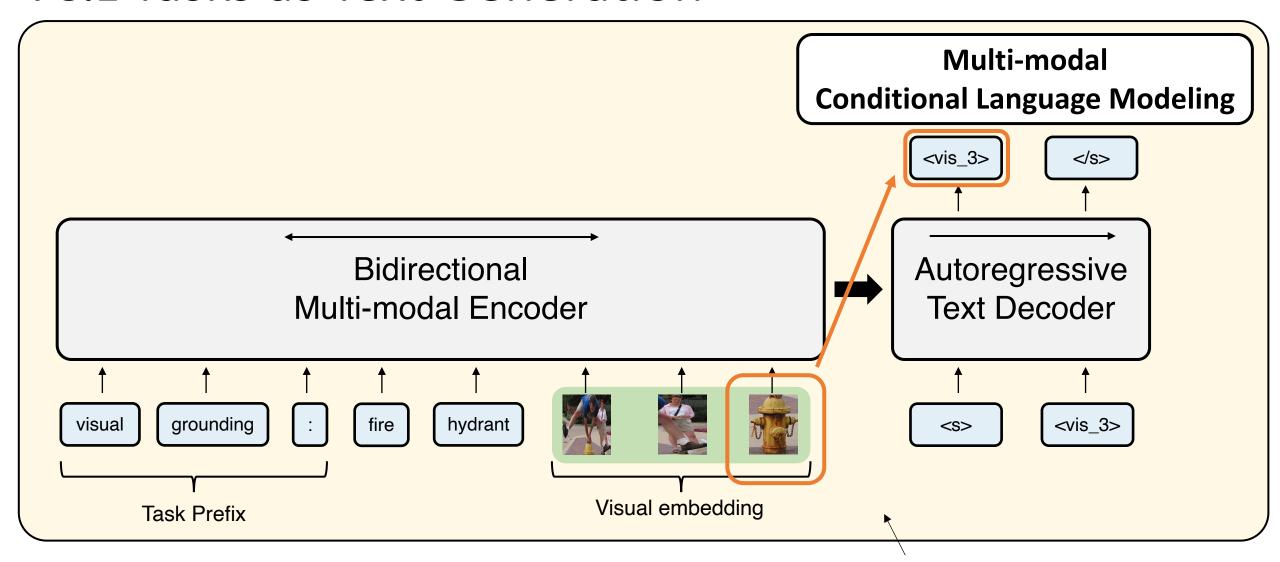
Method



Weights are initialized from off-the-shelf Seq2Seq LMs (e.g., T5)



Weights are initialized from off-the-shelf Seq2Seq LMs (e.g., T5)

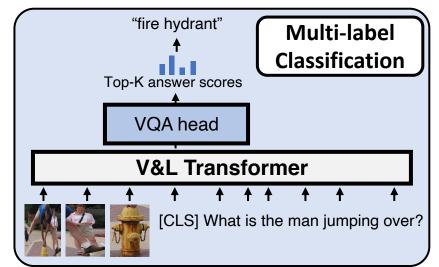


Weights are initialized from off-the-shelf Seq2Seq LMs (e.g., T5)

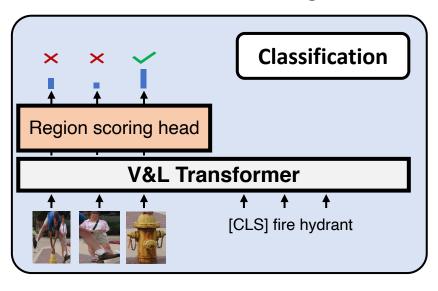
Background Method Experiments

Visual Question Answering

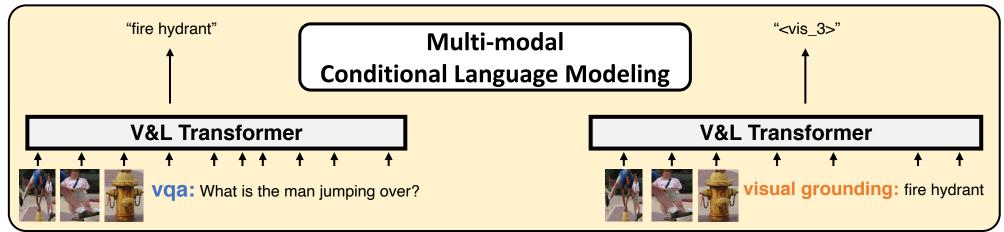
Previous models



Visual Grounding



Ours



Background

Method

Visual Question Answering Visual Grounding "fire hydrant" Multi-label Classification Classification Top-K answer scores Region scoring head VQA head **V&L Transformer V&L Transformer** [CLS] fire hydrant [CLS] What is the man jumping over? "<vis_3>" "fire hydrant" Multi-modal **Conditional Language Modeling V&L Transformer V&L Transformer** visual grounding: fire hydrant **VQa:** What is the man jumping over?

Background

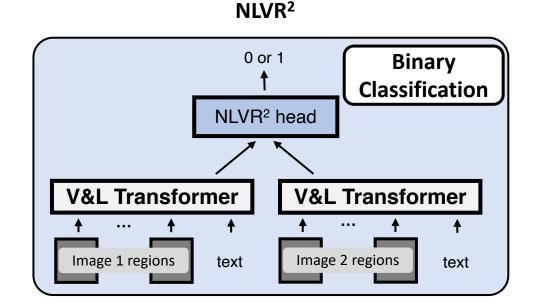
Ours

Previous

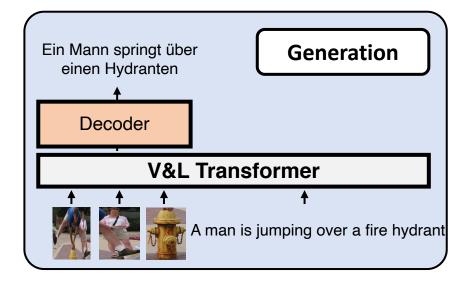
models

Method

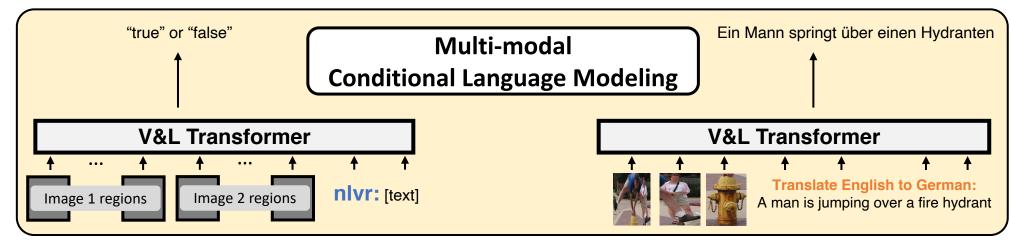
Previous models



Multimodal Machine Translation (En-De)



Ours



Background Method Experiments

Comparable to Baselines on Downstream Tasks

Table 2. Single model performance on downstream tasks. Note that the baseline models adopt task-specific objectives and architectures, whereas our models tackle all tasks, including discriminative tasks (e.g., RefCOCOg), as text generation with a single architecture and objective. * See our discussion in Sec.5.3.

	#		Discriminative tasks					Generative tasks	
Method	Pretrain Images	VQA test-std Acc	GQA test-std Acc	NLVR ² test-P Acc	RefCOCOg test ^d Acc	$VCR Q \rightarrow AR$ $test$ Acc	COCO Cap Karpathy test CIDEr	Multi30K En-De test 2018 BLEU	
LXMERT	180K	72.5	60.3	74.5	_	_	-	-	
ViLBERT	3M	70.9	-	_	-	54.8	-	-	
$UNITER_{Base}$	4M	72.9	-	77.9	74.5	58.2	-		
Unified VLP	3 M	70.7	-	-	-	-	117.7	-	
$Oscar_{Base}$	4 M	73.4	61.6	78.4	-	-	123.7	-	
XGPT	3 M	-	-	-	_	-	120.1	-	
MeMAD	-	-	-	-	-	-	-	38.5	
VL-T5	180K	70.3	60.8	73.6	71.3	58.9	116.5	38.6	
VL-BART	180K	71.3	60.5	70.3	22.4*	48.9	116.6	28.1	

Our m

	1101 1							120.1				
	MeMAD	-	-	1-	-	-	-	-	38.5	_		
madala	VL-T5	180K	70.3	60.8	73.6	71.3	58.9	116.5	38.6	1		
models	VL-BART	180K	71.3	60.5	70.3	22.4*	48.9	116.6	28.1			
										_		

Comparable to Baselines on Downstream Tasks

Table 2. Single model performance on downstream tasks. Note that the baseline models adopt task-specific objectives and architectures, whereas our models tackle all tasks, including discriminative tasks (e.g., RefCOCOg), as text generation with a single architecture and objective. * See our discussion in Sec.5.3.

	#		Discriminative tasks					Generative tasks	
Method	Pretrain Images	VQA test-std Acc	GQA test-std Acc	NLVR ² test-P Acc	$\begin{array}{c} RefCOCOg \\ test^d \\ Acc \end{array}$	$VCR Q \rightarrow AR$ $test$ Acc	COCO Cap Karpathy test CIDEr	Multi30K En-De test 2018 BLEU	
LXMERT	180K	72.5	60.3	74.5	-	-	-	-	
ViLBERT	3M	70.9	-	-	-	54.8	-	-	
${\sf UNITER}_{Base}$	4M	72.9	-	77.9	74.5	58.2	-		
Unified VLP	3 M	70.7	-	-	-	-	117.7	-	
$Oscar_{Base}$	4M	73.4	61.6	78.4	-	-	123.7	-	
XGPT	3 M	-	-	-	-	-	120.1	-	
MeMAD	-	-	-	-	-	-	-	38.5	
VL-T5	180K	70.3	60.8	73.6	71.3	58.9	116.5	38.6	
VL-BART	180K	71.3	60.5	70.3	22.4*	48.9	116.6	28.1	

Closest baseline

Our models

Better Generalization on Rare Answers

Table 3. VQA Karpathy-test split accuracy using generative and discriminative methods. We break down the questions into two subsets in terms of whether the best-scoring answer a^* for each question is included in the top-K answer candidates A^{topk} . Indomain: $a^* \in A^{topk}$, Out-of-domain: $a^* \notin A^{topk}$.

Method	In-domain	Out-of-domain	Overall
Discriminativ			
UNITER _{Base}	74.4	10.0	70.5
VL-T5	70.2	7.1	66.4
VL-BART	69.4	7.0	65.7
Generative			
VL-T5	71.4	13.1	67.9
VL-BART	72.1	13.2	68.6

Background

Method

Better Generalization on Rare Answers

Table 3. VQA Karpathy-test split accuracy using generative and discriminative methods. We break down the questions into two subsets in terms of whether the best-scoring answer a^* for each question is included in the top-K answer candidates A^{topk} . Indomain: $a^* \in A^{topk}$, Out-of-domain: $a^* \notin A^{topk}$.

Method	In-domain	Out-of-domain	Overall					
Discriminativ	Discriminative							
UNITER _{Base}	74.4	10.0	70.5					
VL-T5	70.2	7.1	66.4					
VL-BART	69.4	7.0	65.7					
Generative								
VL-T5	71.4	13.1	67.9					
VL-BART	72.1	13.2	68.6					

Generative > Discriminative on same backbone

Background

Method

Better Generalization on Rare Answers

Table 3. VQA Karpathy-test split accuracy using generative and discriminative methods. We break down the questions into two subsets in terms of whether the best-scoring answer a^* for each question is included in the top-K answer candidates A^{topk} . Indomain: $a^* \in A^{topk}$, Out-of-domain: $a^* \notin A^{topk}$.

Method	In-domain	Out-of-domain	Overall
Discriminativ	ve		
UNITER _{Base}	74.4	10.0	70.5
VL-T5	70.2	7.1	66.4
VL-BART	69.4	7.0	65.7
Generative			
VL-T5	71.4	13.1	67.9
VL-BART	72.1	13.2	68.6

Generative approaches better generalize on rare answers

Background

Method

Multi-task Learning with Single Set of Parameters

Table 9. Single-task vs. Multi-task finetuning results on 7 tasks. With a single set of parameters, our multi-task model achieves similar performance to separately optimized single-task models. We denote the number of parameters of single VL-T5 model as P.

			Discriminative tasks					Generative tasks	
Method	Finetuning tasks	# Params	VQA Karpathy test Acc	GQA test-dev Acc	NLVR ² test-P Acc	RefCOCOg test ^d Acc	VCR val Acc	COCO Caption Karpathy test CIDEr	Multi30K En-De test2018 BLEU
VL-T5 VL-T5	single task all tasks	7P P	67.9 67.2	60.0 58.9	73.6 71.6	71.3 69.4	57.5 55.3	116.1 110.8	38.6 37.6

Similar performance with fewer parameters

Thanks!

Code: https://github.com/j-min/VL-T5

Jaemin Cho, Jie Lei, Hao Tan, Mohit Bansal

{jmincho, jielei, haotan, mbansal}@cs.unc.edu