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Motivation

Problem: Deep neural networks (DNNs) make overconfident predictions

Principled solution: Quantify predictive uncertainty via Bayesian deep learning



Motivation

Goal: Infer posterior distribution over DNN weights

OpenAl debuts gigantic

Problem: Modern DNNSs are too big! (&)@ ERIEVILETLE 0TS RMN 1}
175 billion parameters

Solution(?): Make strong assumptions, e.g. independence between weights

Deteriorates quality of induced uncertainty estimates!
(Ovadia 2019, Fort 2019, Foong 2019, Ashukha 2020)

(source: https://venturebeat.com/2020/05/29/openai-debuts-gigantic-gpt-3-language-model-with-175-billion-parameters/)
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Motivation

Observation: Almost all Bayesian deep learning methods try to
do inference over all the weights of the DNN.

Do we really need to
estimate a posterior
over ALL the weights?!
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Observation: Due to overparameterization, a DNNs accuracy
Is well-preserved by a small subnetwork

How to find those subnetworks? —> DNN pruning, e.g. (Frankle & Carbin 2019)

before pruning after pruning

(Han 2015)

Question: Can a full DNN’s model uncertainty be well-preserved
by a small subnetwork’s model uncertainty?

Answer: Yes!



Subnetwork Inference

€) roint Estimation

—> do standard SGD model training

Q Subnetwork Selection

—> minimize discrepancy between
subnetwork posterior & full posterior

Q Bayesian Inference

—> infer full-covariance Gaussian
posterior via Laplace approximation

Q Prediction

—> use all weights: integrate over the
subnetwork & keep other weights fixed




Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights
* e Diagonal Laplace
e MC Dropout (Gal 2016)
Wasserstein subnetwork inference . (Lakshminarayanan 2017)
subnet of just 40K (0.4%) weights e SWAG (Maddox 2019)

Rotated MNIST (Ovadia 2019)
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* Subnet inference is more robust to distribution shift than popular baselines!



Take-Home Message
@
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We propose a Bayesian deep learning method
that does expressive inference
over a carefully chosen subnetwork
within a neural network,
and show that this performs better than
doing crude inference over the full network.



