DriftSurf: Stable-State / Reactive-State Learning under Concept Drift

Ashraf Tahmasbi

Srikanta Tirthapura

(Iowa State)

Ellango Jothimurugesan

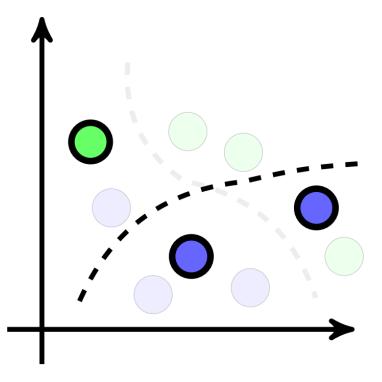
Phillip B. Gibbons

(CMU)

Problem Definition

- At each time step t = 1, 2, ..., a batch of data points arrive
- Data at time t are sampled from a distribution $P_t(X, y)$
- Concept drift occurs at time t if $P_t(X, y) \neq P_{t-1}(X, y)$
- Objective at each time *t* is to minimize the expected risk:

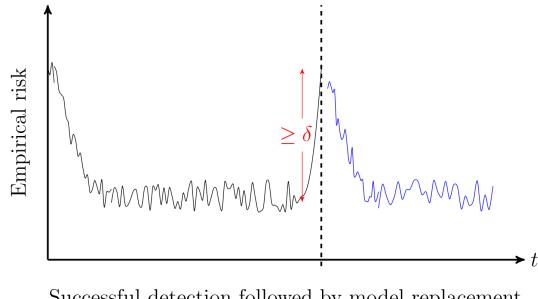
$$\min_{w_t \in \mathcal{F}} \mathbb{E}_{(X,y) \sim P_t} \left[\ell(w_t(X), y) \right]$$



Shortcomings of Prior Drift Detection

Test: do the model's empirical risks degrade over time by a set threshold δ ?

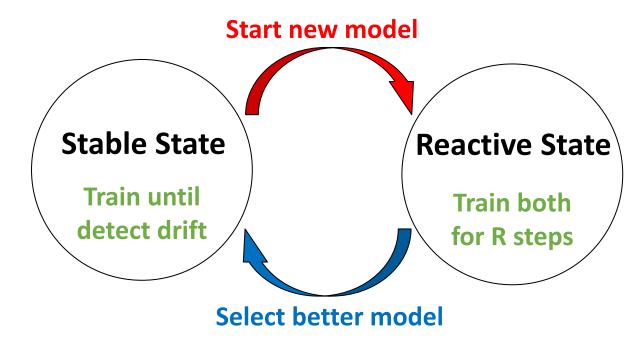
E.g., PERM [Harel et al. '14], HDDM [Frías-Blanco et al. '15], MDDM [Pesaranghader et al. '18]



Successful detection followed by model replacement

- X Difficult to tune threshold, trading false negatives and false positives
- x False negatives: miss subtle drifts
- x False positives: discard a long-trained model

DriftSurf Improves on Prior Drift Detection



Further details in paper:

- Detection test uses frozen models for slow drifts
- Case of drift during reactive state

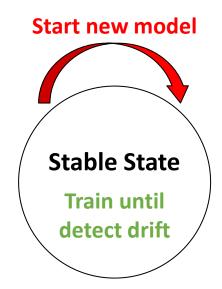
- ✓ Apply aggressive detection (small threshold) to catch even subtle drifts
- ✓ Mitigate false positives and keep the long-trained model

During reactive state, use best predictor from previous step

✓ Reacts quickly to true drifts and accounts for model warm-up

Summary of Theoretical Results (I)

• StandardDD is solely the drift detection test used in DriftSurf



- DriftSurf has higher statistical accuracy than StandardDD
 - In the absence of drifts, and as $t \to \infty$:
 - Theorem: Expected age of DriftSurf's model is $\geq t/4$

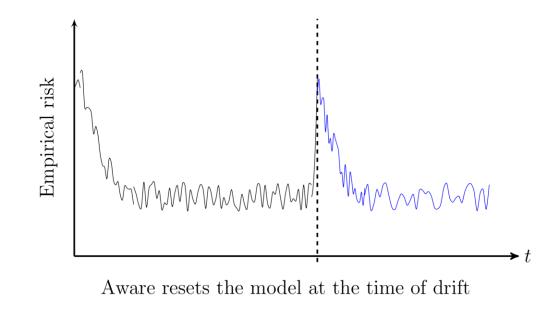
DriftSurf models

are long-trained

 Best known bound: Expected age of StandardDD's model is bounded by a constant

Summary of Theoretical Results (II)

- We show DriftSurf's time to recover from a drift is small
- Aware is an idealized algorithm with oracle access to when drifts occur



- DriftSurf is risk-competitive to Aware
 - Theorem: W.h.p., at each time step after DriftSurf recovers, the expected risk bound of DriftSurf is a constant factor of Aware's

Experimental Results

Drift detection methods:

- MDDM [Pesaranghader et al. '18]
- StandardDD

Ensemble method:

 AUE [Brzezinski & Stefanowski '13] Misclassification rates averaged over time (base learner: logistic regression)

ALGORITHM DATASET	AUE	MDDM	Stand- ardDD	DriftSurf	Aware
DATASET			AKDDD		
SEA0	0.093	0.086	0.097	0.086	0.137
SEA20	0.245	0.289	0.249	0.243	0.264
SEA-Gradual	0.162	0.165	0.160	0.159	0.177
Hyper-slow	0.112	0.116	0.116	0.118	0.110
Hyper-fast	0.179	0.163	0.168	0.173	0.191
SINE1	0.212	0.176	0.184	0.187	0.171
Mixed	0.209	0.204	0.204	0.204	0.192
Circles	0.379	0.372	0.377	0.371	0.368
RCV	0.167	0.125	0.126	0.125	0.121
CoverType	0.279	0.311	0.267	0.268	0.267
Airline	0.333	0.345	0.338	0.334	0.338
Electricity	0.296	0.344	0.320	0.290	0.315
PowerSupply	0.301	0.322	0.308	0.292	0.309

Accuracy Comparison

- High accuracy for both gradual & abrupt drifts
- Outperform AUE and StandardDD
- Generally outperform MDDM, especially on real datasets

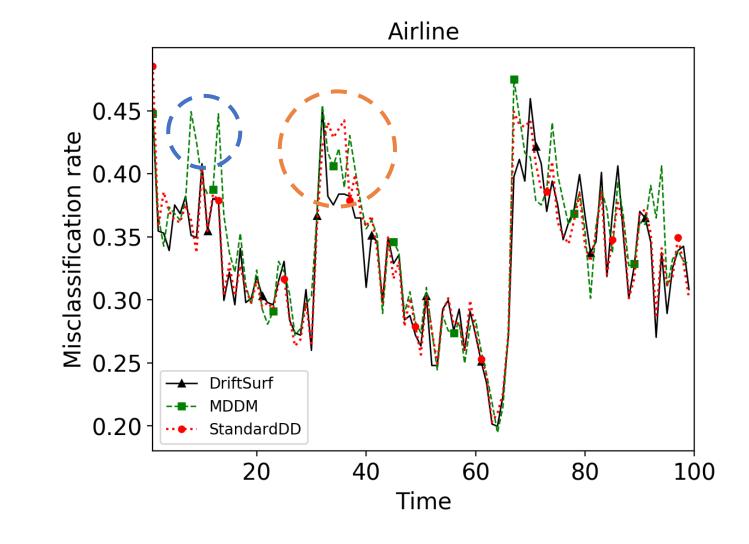
Misclassification rates averaged over time (base learner: logistic regression)

ALGORITHM	AUE	MDDM	Stand-	DriftSurf	Aware
DATASET			ARDDD		
SEA0	0.093	0.086	0.097	0.086	0.137
SEA20	0.245	0.289	0.249	0.243	0.264
SEA-GRADUAL	0.162	0.165	0.160	0.159	0.177
Hyper-slow	0.112	0.116	0.116	0.118	0.110
Hyper-fast	0.179	0.163	0.168	0.173	0.191
SINE1	0.212	0.176	0.184	0.187	0.171
Mixed	0.209	0.204	0.204	0.204	0.192
Circles	0.379	0.372	0.377	0.371	0.368
RCV	0.167	0.125	0.126	0.125	0.121
CoverType	0.279	0.311	0.267	0.268	0.267
Airline	0.333	0.345	0.338	0.334	0.338
Electricity	0.296	0.344	0.320	0.290	0.315
PowerSupply	0.301	0.322	0.308	0.292	0.309

Accuracy on Airline Dataset over Time

MDDM suffers from false positives

StandardDD and MDDM perform worse after drift



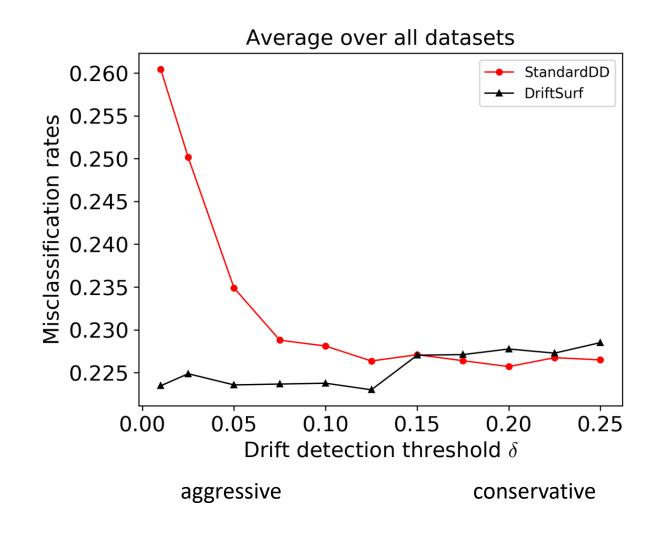
Robustness to Drift Detection Threshold

StandardDD:

x Difficult to tune threshold

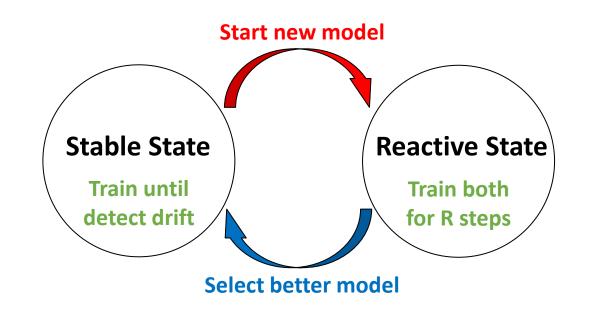
DriftSurf:

- ✓ Apply aggressive detection (small threshold) to catch even subtle drifts
- ✓ Mitigate false positives and keep the long-trained model



Conclusion

 DriftSurf is risk-competitive to Aware (oracle knowledge of drifts)



 DriftSurf's reactive-state approach provides statistically better learning than standalone drift detection

 Our experimental evaluation shows high accuracy in the presence of abrupt and gradual drifts