Neural Feature Matching in Implicit 3D Representations

Yunlu Chen¹, Basura Fernando², Hakan Bilen³, Thomas Mensink ^{4,1}, Efstratios Gavves ¹

¹ University of Amsterdam ² A*STAR ³ University of Edinburgh ⁴Google Research, Amsterdam

Motivation

Smooth interpolation in latent-coded implicit functions

Neural implicit 3D representations

3D shapes as implicit field function F(x; z)

- continuous and resolution-free
- represent arbitrary topology

Smooth interpolation

[Chen & Zhang, CVPR'19]

- Smooth and high-quality interpolated shapes
 - benefit from continuous input point coordinate
- In need of point-level interpretation (which point goes where)
 - understand the model
 - useful in computer-aided design, cross-shape texture mapping, etc.

Method

Tracking point interpolation path with matching feature similarity

- Implicit network pretrained for shape autoencoding
- Implicit feature as point descriptor
- Matching points with feature similarity over interpolation

- Extract iso-surface from implicit field
- Initial *x* on source shape surface

$$x_{t=0}$$
 $x_{t=1}$

$$\delta_t = \operatorname*{argmin} \lVert \Phi(x_t + \delta_t, z_{t+\mathrm{d}t}) - \Phi(x_t, z_t)
Vert$$

- Solve displacement δ_t in small timestep $\mathrm{d}t$ in interpolation
 - minimise feature difference from stepping z
 - Gauss-Newton update using Jacobian on coordinate $J = \nabla_{\chi} \Phi$
 - regularisation to prevent drift from noise
- Integrate displacements for point trajectory

- Repeat for a set of sampled points for the transformed shape
 - not necessarily the exact target surface (but close)
 - helps to understand implicit features

Analysis

Hierarchical function in implicit function layers.

Hierarchy in layers

Resulting shapes from feature matching using different layer features

Hierarchy in layers

- Earlier layers encode coarse outline.
- Deeper layers encode finer details.

resulting shape closer to the target as layer goes deeper

only the final layers change local details

Hierarchy in layers

Mid-layers have distinct features.

- starting layers: more low-level geometry
- final layers: more local detail; to map all surface points to the same output τ .

Application: Mesh Deformation

in existence of inconsistency in topology or semantic parts

Application: Mesh Deformation with inconsistency in topology/semantic parts

appearance fitting

Appearance fitting

- minimise Chamfer distance
- unnaturally distorted arms

feature matching (ours)

Feature matching

- minimise difference in generalisable implicit features
- arms at right place (without semantic part annotation)

Quantitative Results

Table 1. Matching measures between the deformed shape and the target. $CD(\times$	$\times 0.001$	$/ EMD(\times 0)$	0.01).
---	----------------	-------------------	--------

Shape category	chair		airplane		table	
Part-level evaluation	×	√	×	√	×	✓
ShapeFlow (Jiang et al., 2020a)	1.365 / 6.750	4.285 / 5.794	0.378 / 5.194	5.551 / 5.229	-/-	-/-
MeshODE (Huang et al., 2020)	1.187 / 7.281	4.148 / 5.315	-/-	-/-	2.564 / 8.298	14.859 / 7.578
NeuralCage (Yifan et al., 2020)	4.372 / 8.563	6.477 / 6.319	-/-	-/-	11.367 / 11.116	21.676 / 9.378
This paper	1.744 / 7.143	3.772 / 3.256	0.935 / 5.601	5.458 / 4.193	4.998 / 8.387	14.748 / 4.174

- Feature matching outperforms appearance-fitting in part-level measures
- Limitation of standard shape-level matching measures
 - biased towards appearance-fitting: unnatural distortion returns lower error
 - part-level measures introduced, better reflecting matching quality in such cases

Feature matching works well for shapes in a variety of styles and categories.

Conclusion

• Point trajectory with minimum feature difference in interpolation.

- Hierarchy in implicit layer features
 - earlier layers for coarser shape outlines;
 - later layers for finer shape details.

- Apply to mesh deformation
 - handles inconsistencies in topology and semantic parts.
 - no part annotation needed in training or inference