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Sparse neural networks at initialization

Similar performance to dense neural networks
Lower training and inference costs

Prune




Sparse neural networks at initialization

Pruning networks prior to training :

* Using Training Data : SNIP [Leeetal. icLR 2019, GraSP wang etal. IcLR 2020] €1C.

* Without Using Training Data : SynFIOw [ranaka et al. NeuriPs 2020, SynFlow-L2
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Generalized :

Prune
>  Subnetworks Across Datasets

 Methods Across Tasks




PHEW: Paths with Higher Edge-Weights

Consider a randomly initialized neural network and a
target number of weights / parameters (m = 12)

Increasing Weight Magnitude

Number of Weights: (0 /12
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Starting unit selected through round robin



PHEW: Paths with Higher Edge-Weights

Consider a randomly initialized neural network and a

target number of weights / parameters (m = 12) Number of Weights : 2 /12

4 PHEW selects a set of
input-output paths to be
conserved

Increasing Weight Magnitude Starting unit selected through round robin



PHEW: Paths with Higher Edge-Weights

Consider a randomly initialized neural network and a

target number of weights / parameters (m = 12) Number of Weights : 4/ 12

4 Path selection through random
walks, biased towards higher
weight magnitudes
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Increasing Weight Magnitude Starting unit selected through round robin



PHEW: Paths with Higher Edge-Weights

Consider a randomly initialized neural network and a

target number of weights / parameters (m = 12) Number of Weights : 12 /12

Random walks continue until
target number of weights have
ben selected.

Increasing Weight Magnitude Starting unit selected through round robin



PHEW: Paths with Higher Edge-Weights

Consider a randomly initialized neural network and a

target number of weights / parameters (m = 12) Number of Weights : 12 /12

Remove weights not selected
through the random walks
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Increasing Weight Magnitude Starting unit selected through round robin



Why do we select edges with
high weight magnitudes 7



Larger number of paths and higher weight magnitudes leads to
faster convergence

A UNIFIED PATHS PERSPECTIVE FOR PRUNING
AT INITIALIZATION
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Larger number of paths and higher weight magnitudes leads to
faster convergence

Let us consider a ReLU network at initialization, f(x,8), 8 € R™
An input-output path, p

Edge-Weight Product for path p,

m(0) = || 6k=10ix6;
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k: Edge, 0} : Weight of Edge




Larger number of paths and higher weight magnitudes leads to
faster convergence

Let us consider a ReLU network at initialization, f(x,8), 8 € R™

An input-output path, p

Edge-Weight Product for path p, Path Kernel element for two paths p and g,
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k: Edge, 0} : Weight of Edge



Larger number of paths and higher weight magnitudes leads to
faster convergence

Let us consider a ReLU network at initialization, f(x,8), 8 € R™

An input-output path, p

Edge-Weight Product for path p, Path Kernel element for two paths p and g,
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Larger number of paths and higher weight magnitudes leads to

faster convergence
~ m 92 )
Tr(Ilg) = ) Tg(p,p) > ( )
L D =1,0x€p k y

Subnetworks with higher path kernel trace are expected to converge faster

[Genhart et al. 2021]

Path kernel trace increases with :

* Number of paths
« Edge-Weight-Product Magnitude of the Paths

[1] : Gebhart, Thomas, Udit Saxena, and Paul Schrater. "A Unified Paths Perspective for Pruning at Initialization." arXiv preprint arXiv:2101.10552 (2021).



PHEW attains larger path kernel trace than random paths

VGG19 on CIFAR-100

Trace of Path Kernel (Log Scale)
h

44 107 168 262 366 457 565 702 900
Network Density (%)

® PHEW Inverse Weighted Walks W  Unbiased Walks



Why not maximize the path
kernel trace?



SynFlow-L2 maximizes the path kernel trace

Score

Prune



SynFlow-L2 maximizes the path kernel trace

VGG19 on CIFAR-100

Trace of Path Kernel (Log Scale)
dh

44 107 168 262 366 457 565 702 9S00
Network Density (%)

V SynFlow-L2 == SynFlow @ PHEW
® Unbiased Walks @ Inverse Weighted Walks



Optimizing just the path kernel trace produces narrow layers

2
1) = Yot @
k=1,0,€p

Subnetwork with maximum path kernel trace :

* The lowest possible width

« The highest number of paths

Single hidden layered network



Optimizing just the path kernel trace produces narrow layers

VGG19 on CIFAR-100 : 1.8% Density
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B Unpruned WV SynFlow-L2 == SynFlow @ PHEW



Larger per-layer width improves performance

Published as a conference paper at ICLR 2021

ARE WIDER NETS BETTER GIVEN THE SAME NUMBER
OF PARAMETERS?
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Larger per-layer width improves performance

VGG19 on CIFAR-100 : 1.8% Density

69 1

Top-1 Accuracy (%)
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== SynFlow : Layer-Wise Mask Shuffling SynFlow-L2 : Layer-Wise Mask Shuffling



PHEW achieves larger per-layer width due to randomization

4 )
Given the required number of walks W and N;, number of units in layer [,

the expected number of random walks through each unit of a layer [ is : [

N;
_ Y

VGG19 on CIFAR-100 : 1.8% Density
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B Unpruned W SynFlow-L2 SynFlow @ PHEW
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PHEW : faster convergence and better performance
Higher Path Higher Per-
Kernel Trace Layer Width )

Faster Better
Convergence Performance

C




Experiments and
Results



Accuracy gap increases with number of classes

. ResNet20 on CIFAR-10 VGG19 on Tiny-ImageNet
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B Unpruned WV SynFlow-L2 == SynFlow @ PHEW



Top-1 Accuracy (%)

PHEW a good alternative to
data-dependent SNIP and GraSP
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Conclusion and future research questions

Exploring more path-based network construction algorithms at different points
in time while training.

o Using limited amounts of training data

o Dynamically changing connectivity throughout training

How to dynamically determine the optimal number of parameters in a sparse
network ?

o Rather than starting with with a given target number of parameters



