

PHEW: Constructing Sparse Networks that Learn Fast and Generalize Well Without Training Data

Shreyas Malakarjun Patil, Constantine Dovrolis

Sparse neural networks at initialization

- Similar performance to dense neural networks
- Lower training and inference costs

Sparse neural networks at initialization

Pruning networks prior to training:

- Using Training Data: SNIP [Lee et al. ICLR 2019], GraSP [Wang et al. ICLR 2020] etc.
- Without Using Training Data: SynFlow [Tanaka et al. NeurIPS 2020], SynFlow-L2

Generalized:

- Subnetworks Across Datasets
- Methods Across Tasks

Consider a randomly initialized neural network and a target number of weights / parameters (m=12)

Number of Weights: 0 / 12

Increasing Weight Magnitude

Starting unit selected through round robin

Consider a randomly initialized neural network and a target number of weights / parameters (m=12)

Number of Weights: 2 / 12

PHEW selects a set of input-output paths to be conserved

Increasing Weight Magnitude

Consider a randomly initialized neural network and a target number of weights / parameters (m=12)

Number of Weights: 4 / 12

Path selection through random walks, biased towards higher weight magnitudes

$$Q(j,i) = \frac{|\theta(j,i)|}{\sum_{j} |\theta(j,i)|}$$

Increasing Weight Magnitude

Consider a randomly initialized neural network and a target number of weights / parameters (m=12)

Number of Weights: 12 / 12

Random walks continue until target number of weights have ben selected.

Increasing Weight Magnitude

Consider a randomly initialized neural network and a target number of weights / parameters (m=12)

Number of Weights: 12 / 12

Remove weights not selected through the random walks

Increasing Weight Magnitude

Why do we select edges with high weight magnitudes?

A Unified Paths Perspective for Pruning at Initialization

Thomas Gebhart*

Department of Computer Science University of Minnesota gebhart@umn.edu

Paul Schrater

Department of Computer Science University of Minnesota schrater@umn.edu Udit Saxena*
Sumo Logic
usaxena@sumologic.com

Let us consider a ReLU network at initialization, $~m{f}(m{x},m{ heta}),~m{ heta} \in \mathbb{R}^m$

An input-output path, p

Edge-Weight Product for path p,

$$egin{pmatrix} oldsymbol{\pi}_p(oldsymbol{ heta}) = \prod_{k=1, heta_k \in p}^m heta_k = heta_i imes heta_j \end{pmatrix}$$

k: Edge, $\, heta_k$: Weight of Edge

Let us consider a ReLU network at initialization, $~m{f}(m{x},m{ heta}),~m{ heta} \in \mathbb{R}^m$

An input-output path, p

Edge-Weight Product for path p,

$$egin{equation} oldsymbol{\pi}_p(oldsymbol{ heta}) = \prod_{k=1, heta_k \in p}^m heta_k = heta_i imes heta_j \end{aligned}$$

k: Edge, $\, heta_k$: Weight of Edge

Path Kernel element for two paths p and q,

$$\mathbf{\Pi}_{\boldsymbol{\theta}}(p,q) = \sum_{k=1}^{m} \underbrace{\frac{\partial \pi_p(\boldsymbol{\theta})}{\partial \theta_k} \underbrace{\partial \pi_q(\boldsymbol{\theta})}_{\partial \theta_k}}_{p}$$

Let us consider a ReLU network at initialization, $~m{f}(m{x},m{ heta}),~m{ heta} \in \mathbb{R}^m$

An input-output path, p

Edge-Weight Product for path p,

$$egin{aligned} oldsymbol{\pi}_p(oldsymbol{ heta}) = \prod_{k=1, heta_k \in p}^m heta_k = heta_i imes heta_j \end{aligned}$$

Path Kernel element for two paths p and q,

$$\mathbf{\Pi}_{\boldsymbol{\theta}}(p,q) = \sum_{k=1}^{m} \underbrace{\frac{\partial \pi_p(\boldsymbol{\theta})}{\partial \theta_k} \underbrace{\partial \pi_q(\boldsymbol{\theta})}_{\partial \theta_k}}_{p}$$

$$Tr(\mathbf{\Pi}_{\boldsymbol{\theta}}) = \sum_{p} \mathbf{\Pi}_{\boldsymbol{\theta}}(p, p) = \sum_{p} \sum_{k=1, \theta_k \in p}^{m} \left(\frac{\pi_p(\boldsymbol{\theta})}{\theta_k}\right)^2$$

$$Tr(\mathbf{\Pi}_{\boldsymbol{\theta}}) = \sum_{p} \mathbf{\Pi}_{\boldsymbol{\theta}}(p, p) = \sum_{p} \sum_{k=1, \theta_k \in p}^{m} \left(\underbrace{\pi_p(\boldsymbol{\theta})}_{\boldsymbol{\theta}_k} \right)^2$$

Subnetworks with higher path kernel trace are **expected** to converge faster [Genhart et al. 2021]

Path kernel trace increases with:

- Number of paths
- Edge-Weight-Product Magnitude of the Paths

PHEW attains larger path kernel trace than random paths

Why not maximize the path kernel trace?

SynFlow-L2 maximizes the path kernel trace

SynFlow-L2 maximizes the path kernel trace

Optimizing just the path kernel trace produces narrow layers

$$Tr(\mathbf{\Pi}_{\boldsymbol{\theta}}) = \sum_{p} \mathbf{\Pi}_{\boldsymbol{\theta}}(p, p) = \sum_{p} \sum_{k=1, \theta_k \in p}^{m} \underbrace{\pi_p(\boldsymbol{\theta})}_{\boldsymbol{\theta}_k}^2$$

Subnetwork with maximum path kernel trace:

- The lowest possible width
- The highest number of paths

Single hidden layered network

Optimizing just the path kernel trace produces narrow layers

Unpruned V SynFlow-L2 + SynFlow •

PHEW

Larger per-layer width improves performance

Published as a conference paper at ICLR 2021

ARE WIDER NETS BETTER GIVEN THE SAME NUMBER OF PARAMETERS?

Anna Golubeva*

Perimeter Institute for Theoretical Physics Waterloo, Canada agolubeva@pitp.ca

Guy Gur-Ari

Blueshift, Alphabet Mountain View, CA guyga@google.com

Behnam Neyshabur

Blueshift, Alphabet Mountain View, CA neyshabur@google.com

Larger per-layer width improves performance

PHEW achieves larger per-layer width due to randomization

Given the required number of walks W and N_l , number of units in layer l, the expected number of random walks through each unit of a layer l is : $\frac{W}{N_l}$

PHEW: faster convergence and better performance

Experiments and Results

Accuracy gap increases with number of classes

PHEW a good alternative to data-dependent SNIP and GraSP

Conclusion and future research questions

- Exploring more path-based network construction algorithms at different points in time while training.
 - Using limited amounts of training data
 - Dynamically changing connectivity throughout training
- How to dynamically determine the optimal number of parameters in a sparse network?
 - Rather than starting with with a given target number of parameters