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Sparse neural networks at initialization

Prune

• Similar performance to dense neural networks
• Lower training and inference costs



Sparse neural networks at initialization

• Using Training Data : SNIP [Lee et al. ICLR 2019], GraSP [Wang et al. ICLR 2020] etc.

• Without Using Training Data : SynFlow [Tanaka et al. NeurIPS 2020], SynFlow-L2

Prune

Generalized :

• Subnetworks Across Datasets
• Methods Across Tasks

Pruning networks prior to training :



PHEW: Paths with Higher Edge-Weights

Increasing Weight Magnitude Starting unit selected through round robin

Consider a randomly initialized neural network and a 
target number of weights / parameters ( m = 12 ) Number of Weights : / 120



PHEW: Paths with Higher Edge-Weights

Increasing Weight Magnitude Starting unit selected through round robin

Consider a randomly initialized neural network and a 
target number of weights / parameters ( m = 12 ) Number of Weights : / 12

PHEW selects a set of 
input-output paths to be 
conserved
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PHEW: Paths with Higher Edge-Weights

Increasing Weight Magnitude Starting unit selected through round robin

Consider a randomly initialized neural network and a 
target number of weights / parameters ( m = 12 ) Number of Weights : / 12

Path selection through random 
walks, biased towards higher 
weight magnitudes 
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PHEW: Paths with Higher Edge-Weights

Increasing Weight Magnitude Starting unit selected through round robin

Consider a randomly initialized neural network and a 
target number of weights / parameters ( m = 12 ) Number of Weights : / 12

Random walks continue until 
target number of weights have 
ben selected.
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PHEW: Paths with Higher Edge-Weights

Increasing Weight Magnitude Starting unit selected through round robin

Consider a randomly initialized neural network and a 
target number of weights / parameters ( m = 12 ) Number of Weights : / 12

Remove weights not selected 
through the random walks
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Why do we select edges with 
high weight magnitudes ?



Larger number of paths and higher weight magnitudes leads to 
faster convergence

Edge-Weight Product for path p,

: Edge, : Weight of Edge



Larger number of paths and higher weight magnitudes leads to 
faster convergence

An input-output path, p

Let us consider a ReLU network at initialization, 

Edge-Weight Product for path p,

: Edge, : Weight of Edge



Larger number of paths and higher weight magnitudes leads to 
faster convergence

An input-output path, p

Let us consider a ReLU network at initialization, 

Edge-Weight Product for path p, Path Kernel element for two paths p and q,

: Edge, : Weight of Edge



Larger number of paths and higher weight magnitudes leads to 
faster convergence

An input-output path, p

Let us consider a ReLU network at initialization, 

Edge-Weight Product for path p, Path Kernel element for two paths p and q,



Larger number of paths and higher weight magnitudes leads to 
faster convergence

Subnetworks with higher path kernel trace are expected to converge faster 
[Genhart et al. 2021]

• Number of paths

• Edge-Weight-Product Magnitude of the Paths

[1] : Gebhart, Thomas, Udit Saxena, and Paul Schrater. "A Unified Paths Perspective for Pruning at Initialization." arXiv preprint arXiv:2101.10552 (2021).

Path kernel trace increases with :



PHEW attains larger path kernel trace than random paths 



Why not maximize the path 
kernel trace?



SynFlow-L2 maximizes the path kernel trace

Score

Prune



SynFlow-L2 maximizes the path kernel trace



Optimizing just the path kernel trace produces narrow layers

• The lowest possible width

• The highest number of paths

Subnetwork with maximum path kernel trace :

Single hidden layered network



Optimizing just the path kernel trace produces narrow layers



Larger per-layer width improves performance



Larger per-layer width improves performance



PHEW achieves larger per-layer width due to randomization



PHEW : faster convergence and better performance

PHEW

Higher Path 
Kernel Trace

Higher Per-
Layer Width

Faster 
Convergence

Better 
Performance



Experiments and 
Results



Accuracy gap increases with number of classes



PHEW a good alternative to 
data-dependent SNIP and GraSP



Conclusion and future research questions

● Exploring more path-based network construction algorithms at different points 
in time while training.

○ Using limited amounts of training data

○ Dynamically changing connectivity throughout training

● How to dynamically determine the optimal number of parameters in a sparse 
network ?

○ Rather than starting with with a given target number of parameters


