
PHEW: Constructing Sparse Networks that
Learn Fast and Generalize Well

Without Training Data

Shreyas Malakarjun Patil, Constantine Dovrolis

Sparse neural networks at initialization

Prune

• Similar performance to dense neural networks
• Lower training and inference costs

Sparse neural networks at initialization

• Using Training Data : SNIP [Lee et al. ICLR 2019], GraSP [Wang et al. ICLR 2020] etc.

• Without Using Training Data : SynFlow [Tanaka et al. NeurIPS 2020], SynFlow-L2

Prune

Generalized :

• Subnetworks Across Datasets
• Methods Across Tasks

Pruning networks prior to training :

PHEW: Paths with Higher Edge-Weights

Increasing Weight Magnitude Starting unit selected through round robin

Consider a randomly initialized neural network and a
target number of weights / parameters (m = 12) Number of Weights : / 120

PHEW: Paths with Higher Edge-Weights

Increasing Weight Magnitude Starting unit selected through round robin

Consider a randomly initialized neural network and a
target number of weights / parameters (m = 12) Number of Weights : / 12

PHEW selects a set of
input-output paths to be
conserved

2

PHEW: Paths with Higher Edge-Weights

Increasing Weight Magnitude Starting unit selected through round robin

Consider a randomly initialized neural network and a
target number of weights / parameters (m = 12) Number of Weights : / 12

Path selection through random
walks, biased towards higher
weight magnitudes

4

PHEW: Paths with Higher Edge-Weights

Increasing Weight Magnitude Starting unit selected through round robin

Consider a randomly initialized neural network and a
target number of weights / parameters (m = 12) Number of Weights : / 12

Random walks continue until
target number of weights have
ben selected.

12

PHEW: Paths with Higher Edge-Weights

Increasing Weight Magnitude Starting unit selected through round robin

Consider a randomly initialized neural network and a
target number of weights / parameters (m = 12) Number of Weights : / 12

Remove weights not selected
through the random walks

12

Why do we select edges with
high weight magnitudes ?

Larger number of paths and higher weight magnitudes leads to
faster convergence

Edge-Weight Product for path p,

: Edge, : Weight of Edge

Larger number of paths and higher weight magnitudes leads to
faster convergence

An input-output path, p

Let us consider a ReLU network at initialization,

Edge-Weight Product for path p,

: Edge, : Weight of Edge

Larger number of paths and higher weight magnitudes leads to
faster convergence

An input-output path, p

Let us consider a ReLU network at initialization,

Edge-Weight Product for path p, Path Kernel element for two paths p and q,

: Edge, : Weight of Edge

Larger number of paths and higher weight magnitudes leads to
faster convergence

An input-output path, p

Let us consider a ReLU network at initialization,

Edge-Weight Product for path p, Path Kernel element for two paths p and q,

Larger number of paths and higher weight magnitudes leads to
faster convergence

Subnetworks with higher path kernel trace are expected to converge faster
[Genhart et al. 2021]

• Number of paths

• Edge-Weight-Product Magnitude of the Paths

[1] : Gebhart, Thomas, Udit Saxena, and Paul Schrater. "A Unified Paths Perspective for Pruning at Initialization." arXiv preprint arXiv:2101.10552 (2021).

Path kernel trace increases with :

PHEW attains larger path kernel trace than random paths

Why not maximize the path
kernel trace?

SynFlow-L2 maximizes the path kernel trace

Score

Prune

SynFlow-L2 maximizes the path kernel trace

Optimizing just the path kernel trace produces narrow layers

• The lowest possible width

• The highest number of paths

Subnetwork with maximum path kernel trace :

Single hidden layered network

Optimizing just the path kernel trace produces narrow layers

Larger per-layer width improves performance

Larger per-layer width improves performance

PHEW achieves larger per-layer width due to randomization

PHEW : faster convergence and better performance

PHEW

Higher Path
Kernel Trace

Higher Per-
Layer Width

Faster
Convergence

Better
Performance

Experiments and
Results

Accuracy gap increases with number of classes

PHEW a good alternative to
data-dependent SNIP and GraSP

Conclusion and future research questions

● Exploring more path-based network construction algorithms at different points
in time while training.

○ Using limited amounts of training data

○ Dynamically changing connectivity throughout training

● How to dynamically determine the optimal number of parameters in a sparse
network ?

○ Rather than starting with with a given target number of parameters

