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Complex Causes Motivation
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Complex Causes Motivation
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Complex Causes Motivation
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Complex Causes Key Insight

Historical Data Limited New Data
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Complex Causes Problem Setup
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Complex Causes Causal Effect Estimation (- S

d
E[Y | do(w),2] = 6o + Y _ 6E[¢i(X,2) | w, 2]

i=1

Learn gi(W,Z) = E[¢i(X,Z) | W, Z] for all abstract features via
black-box

Learn 8 = arg miny E[(Y — 67 §)?] via regularized regression, to
provide sparsity
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Complex Causes Causal Effect Estimation
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Complex Causes Identifying Pragmatic Mediators

2 Step procedure

Sparse regression, step2 Cond. independence test, step 1
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Complex Causes Identifying Pragmatic Mediators

2 Step procedure

Sparse regression, step 2  Cond. independence test, step 1

Intersection identifies pragmatic mediators
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Conclusion ML

Common Problem Setup

Interventions applied to complex objects are often crude, and we can leverage invariances
between pragmatic mediators and outcomes to make quality predictions for new
interventions where labels are unavailable.

Transfer Learning of Causal Estimations

We propose a simple 2-Stage approach for estimation of causal effects in novel domains,
based on historical data.

Identifying Mechanisms

We show how our 2-Stage approach can help discover pragmatic mediators that explain
outcomes, and provide insight for new experiments.
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Conclusion grem

Please check out our full paper at
https://arxiv.org/abs/2106.05074

Operationalizing Complex Causes:
A Pragmatic View of Mediation

Limor Gultchin'* David S. Watson MattJ. Kusner Ricardo Silva’*

Or play with the code at
https://github.com/limorigu/ComplexCauses

Hoping to see you soon at the poster session!
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