Operationalizing Complex Causes

A Pragmatic View of Mediation

Limor Gultchin, David Watson, Matt Kusner, Ricardo Silva

The Alan Turing Institute

Complex Causes Motivation

Historical Data

Limited New Data

Historical Data

Limited New Data

$$Y = \theta_0 + \sum_{i=1}^d \theta_i \phi_i(X, Z) + \epsilon$$

$$\mathbb{E}[Y \mid do(w), z] = \theta_0 + \sum_{i=1}^d \theta_i \mathbb{E}[\phi_i(X, Z) \mid w, z]$$

Stage 1

Learn $g_i(W,Z) \equiv \mathbb{E}[\phi_i(X,Z) \mid W,Z]$ for all abstract features via black-box

Stage 2

Learn $\hat{\theta} = \arg\min_{\theta} \mathbb{E}[(Y - \theta^{\top}\hat{\mathbf{g}})^2]$ via regularized regression, to provide sparsity

Complex Causes Identifying Pragmatic Mediators

Conclusion

Common Problem Setup

Interventions applied to complex objects are often **crude**, and we can leverage invariances between **pragmatic mediators** and outcomes to make quality predictions for new interventions where labels are unavailable.

Transfer Learning of Causal Estimations

We propose a simple **2-Stage approach for estimation** of causal effects in novel domains, based on historical data.

Identifying Mechanisms

We show how our 2-Stage approach can help **discover pragmatic mediators that explain outcomes**, and provide insight for new experiments.

Please check out our full paper at https://arxiv.org/abs/2106.05074

Or play with the code at

https://github.com/limorigu/ComplexCauses

Hoping to see you soon at the poster session!