

Regularizing towards Causal Invariance: Linear Models with Proxies

Mike Oberst MIT

Nikolaj Thams Univ. of Copenhagen

Jonas Peters Univ. of Copenhagen

David Sontag MIT

Y: Disease

X₁: Medical History **Y**: Disease

Observed Distribution

A: Access to healthcare (Unobserved)

Observed Distribution

A: Access to healthcare (Unobserved) Example: Variation in access to regular high-quality testing. *X*₁: Medical History **X**₂: Lab Result *Y*: Disease

Observed Distribution

X₂: Lab Result

A: Access to healthcare (Unobserved)

Challenge: Predictive performance may change due to changes in unobserved factors (e.g., economic shocks).

Example: Variation in access to regular high-quality testing.

Observed Distribution

Y: Disease

¥=

*X*₁: Medical History

X₂: Lab Result

• A: Access to healthcare (Unobserved)

Challenge: Predictive performance may change due to changes in unobserved factors (e.g., economic shocks).

Example: Variation in access to regular high-quality testing.

- 1) Protect against shift in unobserved factors?
- 2 Balance between accuracy & robustness?

Observed Distribution

Y: Disease

*X*₁: Medical History

Linear structural causal model (SCM) over all observed and unobserved variables, and one or more **noisy proxies of A**

Assumptions

Linear structural causal model (SCM) over all observed and unobserved variables, and one or more **noisy proxies of A**

Any causal graph over X, Y, H is permitted, but A is an "anchor" with no causal parents.

$$\begin{pmatrix} X \\ Y \\ H \end{pmatrix} \coloneqq B \begin{pmatrix} X \\ Y \\ H \end{pmatrix} + M_A A + \epsilon$$

 $\begin{array}{c} A \\ X \rightarrow Y \end{array}$

 $A \rightarrow X_2$ $\downarrow \qquad \uparrow$ $X_1 \rightarrow Y$

...and more

Covariate Shift

Label Shift

Assumptions

Linear structural causal model (SCM) over all observed and unobserved variables, and one or more **noisy proxies of A**

Any causal graph over X, Y, H is permitted, but A is an "anchor" with no causal parents.

$$\begin{pmatrix} X \\ Y \\ H \end{pmatrix} \coloneqq B \begin{pmatrix} X \\ Y \\ H \end{pmatrix} + M_A A + \epsilon$$

A

Proxy

Proxv

Proxies are linear functions of A with independent additive noise.

Example: Self-reported data on income, distance to closest clinic, etc.

Unknown causal graph between X, Y

Minimize worst-case loss over a set of interventions Interventions on A change the distribution of P(X, Y)

 $\min \sup_{\nu \in C} E_{do(A \coloneqq \nu)} [(Y - \gamma^{\mathsf{T}} X)^2]$

Using prior knowledge:

- Specify **relevant factors of variation** *A* via proxies.
- 2) Specify **plausible shifts** via robustness set *C*.

*A*₁ : Access to Primary Care

A₂ : Housing Stability

X, *Y* not shown here, just the dimensions of *A*

A₂ : Housing Stability

X, *Y* not shown here, just the dimensions of *A*

^[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

A₂ : Housing Stability

X, *Y* not shown here, just the dimensions of *A*

Anchor Regression [1] assumes that A is observed, and optimizes a worst-case loss over bounded interventions

$$\sup_{\nu \in C_A(\lambda)} E_{do(A := \nu)} [(Y - \gamma^{\mathsf{T}} X)^2]$$

Theorem 1 (Informal)

Given a <u>single</u> noisy proxy *W* of *A*, the robustness set is provably reduced, and this reduction is not identifiable.

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

X, *Y* not shown here, just the dimensions of *A*

Anchor Regression [1] assumes that A is observed, and optimizes a worst-case loss over bounded interventions

$$\sup_{\nu \in C_A(\lambda)} E_{do(A := \nu)} [(Y - \gamma^{\mathsf{T}} X)^2]$$

Theorem 1 (Informal)

Given a <u>single</u> noisy proxy *W* of *A*, the robustness set is provably reduced, and this reduction is not identifiable.

Theorem 2 (Informal) Given <u>two</u> noisy proxies of *A*, one can recover the original robustness set, using a modified objective

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

Targeting the robustness set with prior knowledge

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

Conclusion

Incorporate prior knowledge about future shifts, instead of seeking invariance to arbitrary changes

1 Specify **relevant factors of variation** *A* via proxies

2 Specify **plausible shifts** via targeted robustness sets