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Challenge:  Predictive performance may change 
due to changes in unobserved factors (e.g., 
economic shocks).

Observed Distribution

𝑿𝟏: Medical History 𝒀: Disease 𝑿𝟐: Lab Result

Example: Variation in access to regular 
high-quality testing.

1 Protect against shift in 
unobserved factors?

2 Balance between 
accuracy & robustness?



Motivation: Robustness to Dataset Shift

Interventions on A change the 
distribution of P(X, Y)

Minimize worst-case loss over 
a set of interventions 

min sup
𝜈∈𝐶

𝐸𝑑𝑜 𝐴≔𝜈 [ 𝑌 − 𝛾⊤𝑋 2]
𝐴

𝑋 𝑌

Unknown causal graph 
between X, Y
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Assumptions

Proxies are linear functions of A 
with independent additive noise.

Linear structural causal model (SCM) over all observed and 
unobserved variables, and one or more noisy proxies of A

ProxyProxy

Example: Self-reported data on 
income, distance to closest clinic, etc.

𝐴

𝑋 𝑌

𝑊𝑍

Any causal graph over X, Y, H is 
permitted, but A is an “anchor” 
with no causal parents.

Unknown causal graph 
between X, Y



Motivation: Robustness to Dataset Shift

Interventions on A change the 
distribution of P(X, Y)

Minimize worst-case loss over 
a set of interventions 

min sup
𝜈∈𝐶

𝐸𝑑𝑜 𝐴≔𝜈 [ 𝑌 − 𝛾⊤𝑋 2]

1 Specify relevant factors of variation 𝐴 via proxies.

Using prior knowledge:

2 Specify plausible shifts via robustness set 𝐶.
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Theorem 1 (Informal)
Given a single noisy proxy 𝑊 of 𝐴, the robustness set is 
provably reduced, and this reduction is not identifiable.

Theorem 2 (Informal)
Given two noisy proxies of 𝐴, one can recover the original 
robustness set, using a modified objective

𝐶𝐴 𝜆
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Targeting the robustness set with prior knowledge
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𝑋, 𝑌 not shown here, just the 
dimensions of 𝐴

𝐶𝐴 𝜆

Anchor Regression [1] assumes that A is observed, and 
optimizes a worst-case loss over bounded interventions

sup
𝜈∈𝐶𝐴(𝜆)

𝐸𝑑𝑜(𝐴 ≔𝜈) 𝑌 − 𝛾⊤𝑋 2

Theorem 3 (Informal)
We generalize to a larger class of robustness sets, and 
prove that the objective is identified with two proxies

𝐶𝐴 𝜆



Conclusion

Incorporate prior knowledge about future shifts, instead of seeking 

invariance to arbitrary changes

2 Specify plausible shifts via targeted robustness sets

Specify relevant factors of variation 𝐴 via proxies1


