DeepMind

From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization/

Julien Perolat, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark Rowland, Pedro Ortega, Neil Burch, Thomas Anthony, David Balduzzi, Bart De Vylder, Georgios Piliouras, Marc Lanctot, Karl Tuyls Join work between DeepMind and SUTD.

Game theory setup:

Basic Setup:

- Two-player zero-sum Games
- Actions : $a^i \in A$, $a = (a^1, a^2) = (a^i, a^{-i})$
- Policy : $\pi^i \in \Delta A, \ \pi = (\pi^1, \pi^2) = (\pi^i, \pi^{-i})$
- Reward : $r^i(a^1, a^2)$
- **Q-function** : $Q^{i}_{\pi}(a^{i}) = \mathbb{E}_{a^{-i} \sim \pi^{-i}}[r^{i}_{\pi}(a^{i}, a^{-i})]$

Learning with Regularization

Follow The Regularized Leader:

 $y_t^i(a^i) = \int Q_{\pi_s}^i(a^i) ds$ and $\pi_t^i = \operatorname{argmax}_{p \in \Delta A} \Lambda^i(p, y_t^i)$ With : $\Lambda^{i}(p, y) = \langle y, p \rangle - \phi_{i}(p)$ and $\phi_{i}(p)$ is a regularisation for the policy projection.

Adding a policy dependent term:

$$r_{\pi}^{i}(a) = r^{i}(a^{i}, a^{-i}) - \eta \log \frac{\pi^{i}(a^{i})}{\mu^{i}(a^{i})} + \eta \log \frac{\pi^{-i}(a^{-i})}{\mu^{-i}(a^{-i})}$$

This policy depend term transforms a recurrent

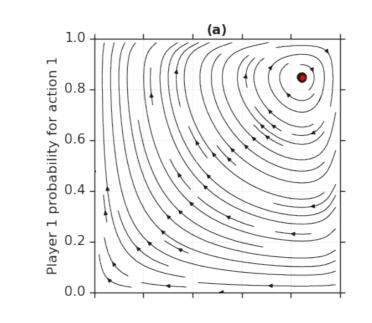
- Value Function : $V^i_{\pi} = \mathbb{E}_{a \sim \pi}[r^i_{\pi}(a)] = \mathbb{E}_{a^i \sim \pi^i}[Q^i_{\pi}(a^i)]$

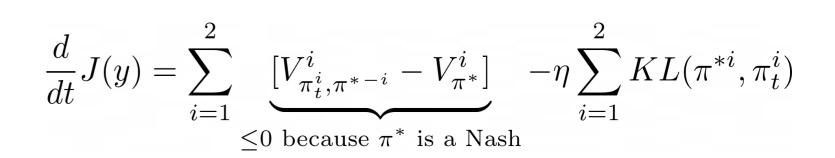
Nash Equilibrium:

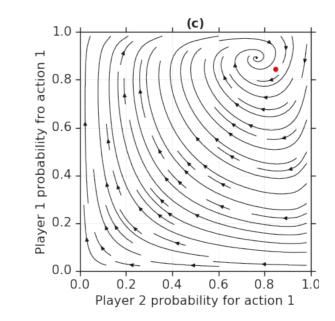
 π^* is a **Nash equilibrium** if for all π and for all i we have $V^i_{\pi^i,\pi^{*-i}} - V^i_{\pi^*} \leq 0$

In zero-sum two-player games, the following quantity is preserved and the learning trajectory is recurrent:

$$J(y) = \sum_{i=1}^{2} \left[\phi_i^*(y_i) - \langle y_i, \pi_i^* \rangle \right]$$







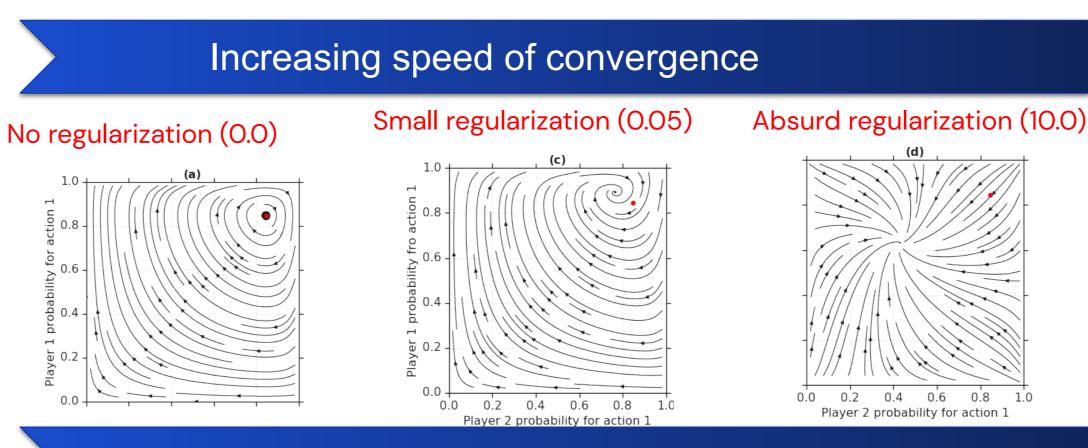
Related Methods to do model free Learning in Games

NFSP:

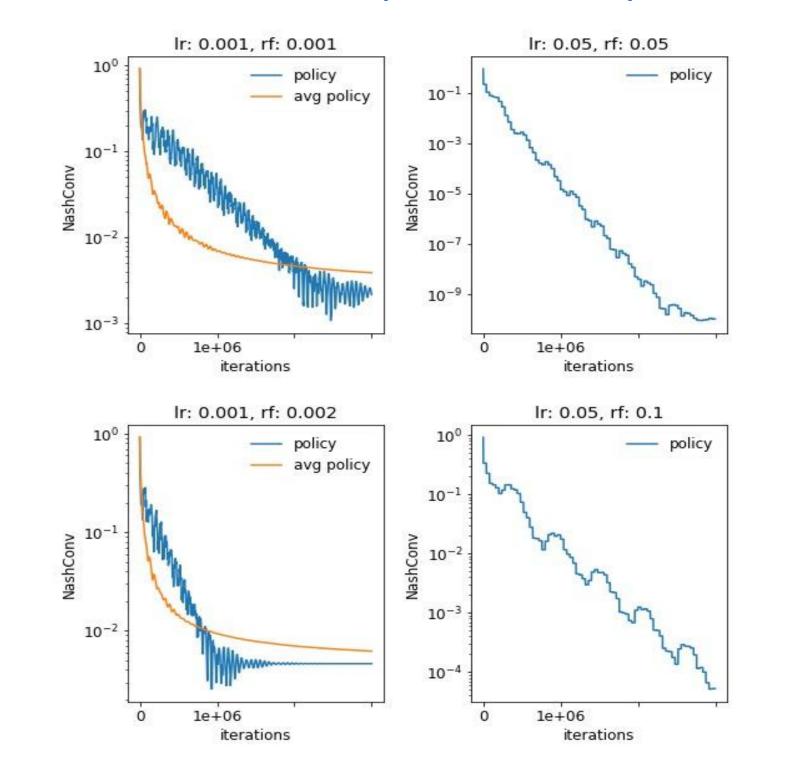
- Theoretically Founded on Fictitious Play,
- Rely on a best response subroutine,
- Need to get an average policy.

PSRO:

- Theoretically Founded on Double Oracle methods,
- Rely on a best response subroutine,



Convergence in Sequential Imperfect Information Games (Kuhn Tabular):



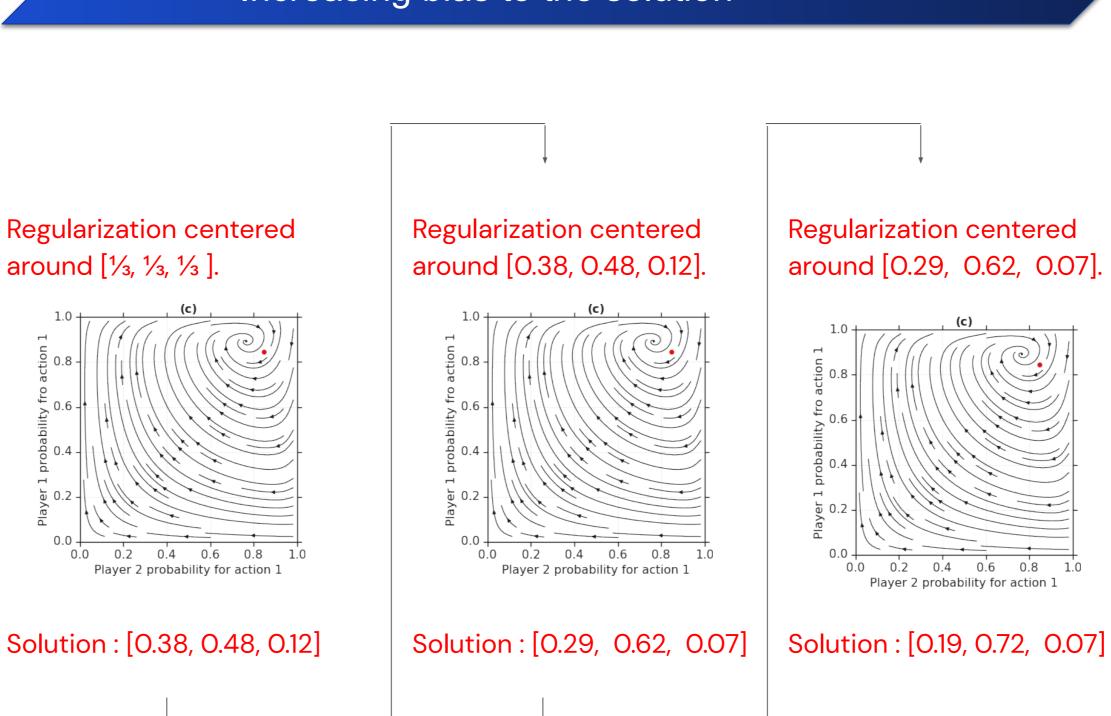
- Iteration will be as slow as the best response computation and the metagame building.

DeepCFR/DREAM/ARMAC:

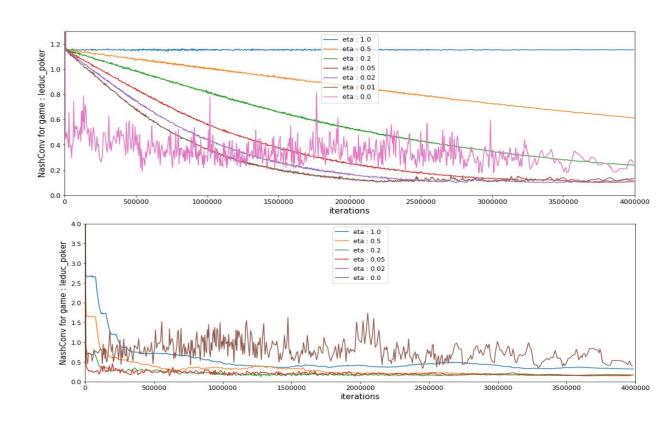
- Theoretically Founded on CFR,
- Need to get an average policy.

LOLA:

- Theoretically Founded on Extragradient methods,
- The High variance slows down the convergence.



Convergence in Sequential Imperfect Information Games (Leduc with Neural Network and a NeuRD loss):



References

- Omidshafiei, & al. Neural replicator dynamics. arXiv, 2019.
- Heinrich, J. and Silver, D. *Deep reinforcement learning* from self-play in imperfect-information games. arXiv, 2016.

Conclusion:

- Our reward transform is a very simple modification of existing
- methods (NeuRD),
- Our method is very competitive in Imperfect information Games compared to other methods,

Liars Dice GoofSpie(4) Kuhn 0.02 0.25 NFSP 0.14 0.16

Increasing bias to the solution

 Mertikopoulos, P., Papadimitriou, C., and Piliouras, G. Cycles in adversarial regularized learning. SODA, 2018. • Lanctot, & al.. A unified game-theoretic approach to multiagent reinforcement learning. NIPS, 2017.

- The analysis covers a large class of general sum games.

0.23 0.009 0.19 0.25 Deep CFR 2.44 0.33 0.94 2.0 Q-learning 0.002 0.28 0.23 0.17 PSRO 0.25 0.22 0.10 0.02 NeuRD

NashConv on a benchmark of small games.