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Game theory setup: Learning with Regularization
Basic Setup: _
- Two-player zero-sum Games Follow The Regularized Leader: Adding a policy dependent term:
- Actions :a" € A, a = (a*,a*) = (a*,a™") - o ' (a’) T (a”")
) ) ) _ i rr(a) =r'(a’,a™")—nlog —— +nlog ————
- Policy : #* € AA, ™= (7T1,7T2) = (7Ti,7T_i) /Q . Wt . EAAA (P yt) p(a) pt (@)
- Reward : r'(al,a?) With : A"’ (p,y) = (y, p) — ¢i(p) and ¢;(p) is a
- Q-function : Q% (') = E —i,—i[rt(a’,a™?)] EEga b HONSIOFSie=p ol CYERNA GO, This policy depend term transforms a recurrent
_ Value Function :Vﬂqf . an[r;(a)] K. . [Q%(a@-)] learning dynamic to a convergent one:

In zero-sum two-player games, the following quantity
is preserved and the learning trajectory is recurrent:
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Nash EqU|I|br|um J(y) s (1) — (y:. 7 <0 because 7* is a Nash
i i

m*is a Nash equilibrium if for all 7 and for all 7 we have V;};m*_i ~ Vi <0
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Related Methods to do model free
Learning in Games

NFSP:
- T_he.o.retically Founded on Increasing speed of convergence Convergence in Sequential Imperfect
Fictitious Play, Information Games (Kuhn Tabular):

Small regularization (0.05) Absurd regularization (10.0)

- Rely on a best response No regularization (0.0) o , . o008, 1F
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Double Oracle methods, | \ ' " 07 "0
- Rely on a best response O oyen2 bty o egion 1 | 102
routin : : : 1074, , . , . ,
subroutine, Increasing blas to the solution 0 leits 0 1eits
- lteration will be as slow as
the beSt response Ir: 0.001, rf: 0.002 Ir: 0.05, rf: 0.1
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DeepCFR/IDREAMlARMAC- Regularization centered Regularization centered Regularization centered 3 g |
- Theoretically Founded on around [, %, % |. around [0.38,048,012]. | around [0.29, 062, 0.07]. 72 12
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LOLA: | Convergence in Sequential Imperfect
- Theoretically Founded on o e e o ORI o Information Games (Leduc with Neural
E;\(tral_glg.rahdlen’? metholds, s prebReracien® Network and a NeuRD loss):
i € High variante SIows Solution : [0.38, 0.48, 0.12] Solution : [0.29, 0.62, 0.07] | Solution:[0.19, 0.72, 0.07] § —
down the convergence. i N — =
| |
Referen
clerences Conclusion:
. . . : . - Our reward transform is a very simple modification of existin
e Omidshafiel, & al. Neural replicator dynamics. arXiv, y P J
2019. methods (NeuRD),
e Heinrich, J. and Silver, D. Deep reinforcement learning . e . .
o . . . - Our method is very competitive in Imperfect information Games
from self-play in imperfect-information games. arXiv, Ledic Kuhn Liars Dice GoofSpie(4)
2016. compared to other methods, NESP  0.16 002 0.5 0.14
e Mertikopoulos, P., Papadimitriou, C., and Piliouras, G. . DespCER -~ 0.23 0.009 1119 0.25
. . . . - The analysis covers a large class of general sum games. Q-learning 244 033  0.94 2.0
Cycles in adversarial reqularized learning. SODA, 2018. PSRO 017  0.002 028 0.23
e Lanctot, & al.. A unified game-theoretic approach to NeeRD 010 002 025 0.22

multiagent reinforcement learning. NIPS, 2017. NashConv on a benchmark of small games.



