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A Conceptual Sketch of Flat and Sharp Minima.
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Generalisation Error

Given a training set S, the generalisation error of the output model
fg, trained using the learning algorithm A on S, is the difference
between the empirical and true risk:

E = RtruE(fg) - Remp(fg>

Generalisation Error and Uniform Stability

We use the notion of uniform stability to uncover the link between
the generalisation error of SGD and loss function.
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Generalisatior
Analysis

Generalisation Error Bound

Consider a loss function ¢ such that 0 < 4(f(-;z) < L for any point
z. Suppose that SGD update rule is executed for T iterations with an
annealing learning rate \;. Then, we have the following
generalisation error bound with probability at least 1 — d:

(fs) = Rirue(fs) = Remp(fs) <
MZZA ( \/log 2/9) +\/210g](v2/5) +;> L log2(]2v/6)

What factors make generalisation error bound tighter?

@ Number of training samples N
@ Number of SGD iteration T’
@ Lipschitz constant ~
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Lipschitz Loss Function

A loss function £(y,y) is v-Lipschitz with respect to the output
vector ¥, if for ¥ > 0 and Vu,v € RX we have

[(u,y) = £(v,y)| < v[[lu—v].
We use || - || to denote the ¢o-norm of vectors.

Intuitively, v is related to how fast £ is allowed to change.
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Semantic Similarity

Characterising the semantic similarity among classes.

@ Due to similarity between neighbouring classes, the label is a
Gaussian distribution for a facial image at the age of 25.
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Existing Loss Function

Kullback-Leibler divergence (KL)

Generalisatior
Analysis

L
L(p.a) = qulog(%)
k=1 Pk

Jensen-Shannon divergence (JS)

L
1 qr Pk
L= §qu10g (pk;‘% ) + P log (Pk;qu
k=1

Distribution Cognisant Loss (GIJM)

L L 1
1 Dk
L= lgg—pl= =) ¢"|1- ()
k=1 k=1 Tk

0<a<l
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Generalisatior
Analysis

Our Main Result

Given that the GJM, JS and KL loss functions are g sas-Lipschitz,
~vjs-Lipschitz and g -Lipschitz, respectively, the following
inequality holds:

YoM < VJs < VKL

and then we have:

E(fs)asm < E(fs)ss < E(fs)kr-
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Cross-database Evaluation (MAE & CS) on the Target Databases

\ | FG-NET | MORPH | FACES | SCROT | SCSUR |
Method MAE CS (%) |MAE CS (%) [MAE CS (%)|MAE €S (%)|MAE CS (%)
Human Workers | 470 695 | 630 510 | N\ NA | NA NA | NA NA
Microsoft APl | 6.20 53.80 | 6.59 46.00 | - 2 2 2 - -

CE 320 8214 | 550 60.34 | 533 61.60 | 6.07 5359 | 5.44 66.76
Ranking 312 83.80 | 528 62.55 |4.83 6574 | 529 63.92 | 541 64.90
KL 3.08 83.83 | 527 6243 |472 66.76 | 525 63.93 | 546 65.71
s 299 8353 | 481 6583 | 468 6652 | 454 6923 | 4.98 67.59
GJM 2.93 84.43 | 4.63 66.03 | 4.47 69.88 | 472 71.19 | 4.78 71.75
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Conclusion

Our main statement in this paper is:

@ Choose a Lipschitz loss function, get model with higher
generalisation.
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