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Is it possible to recover all the ground truth labels from the Log-loss
scores, even when these scores are noised?

First introduced by Whitehill in the context of Kaggle competitions,
where an algorithm that could recover some test labels (without any
noise) was presented using a heuristic based on MCMC simulation1.

1Whitehill, J. "Climbing the kaggle leaderboard by exploiting the log-loss oracle."
AAAI 2018.
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(Binary) Cross-entropy Loss

Given a vector u = (u1, . . . , uN) ∈ [0, 1]N and a labeling σ ∈ {0, 1}N , the
log-loss on u with respect to σ, denoted by LLOSS (u;σ), is defined as
follows:

LLOSS (u;σ) :=
−1
N

ln

(
N∏

i=1

uσi
i (1− ui)

1−σi

)
.
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Label Inference

Let σ ∈ {0,1}N be an (unknown) labeling. The label inference problem
is that of recovering σ given LLOSS (u1;σ) , . . . , LLOSS (uM ;σ). Here,
M is the number of queries and ui ∈ [0,1]N are the prediction vectors.
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Overview of Our Results

Amount of Noise in
Responses Precision # Log-loss Queries #Arithmetic Operations

No noise Arbitrary 1 Õ (N)

No noise φ-bits Θ
(

1 + Nφ2−φ/4
)

O (N)

τ -accurate Arbitrary 1 O(2N )

τ -accurate φ-bits O
(

N
log N + N

log(φ/Nτ)

)
O

(
poly(N,φ/τ)

log(φ/Nτ)

)
Table 1: Overview of our results for binary label inference. Here, N ≥ 1 is the
number of labels to be inferred. We present attacks under both arbitrary and
bounded precision arithmetic models. The τ -accurate means that the error on
the responses is atmost |τ |. The last column represents the number of
arithmetic operations needed at the adversary. All our adversaries are polytime
except for the third row.
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Label Inference from Raw Scores
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Single Query Label Inference under Arbitrary
Precision with Polynomial-time Adversary

Our task here is to compute all labels in a single query, when allowed
arbitrary precision and polynomial time local computation.2

Set ui = pi
1+pi

, where pi is the i th prime.

LLOSS (u;σ) =
−1
N

ln

( ∏N
i=1 pσi

i
(1 + p1) · · · (1 + pN)

)

=⇒
N∏

i=1

pσi
i = (1 + p1) · · · (1 + pN)e−N·LLOSS(u;σ)

The product on the left can be uniquely recovered.

2Aggarwal et al. “On Primes, Log-Loss Scores and (No) Privacy.” EMNLP 2020.
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Label Inference under Bounded Precision with
Polynomial-time Adversary

With bounded precision, using large primes and assuming an accurate
rational form for (1 + p1) · · · (1 + pN)e−N·LLOSS(u;σ) is not possible.

We can issue multiple queries to infer only a few labels at a time
— use u =

[
p1

1+p1
, · · · , pm

1+pm
, 1

2 , · · · ,
1
2

]
.

Theorem
Let φ ≥ 9. There exists a polynomial-time adversary for the label
inference problem in the FPA(φ) model using Θ

(
1 + Nφ2−φ/4) queries.

FPA(φ): Finite Precision Arithmetic with φ bits of precision.
Observe the tight bound in the Theorem statement – lower bound
derived using the Prime number theorem (pm = Θ(m log m)).
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Label Inference from Noised Scores

Label Inference Attacks from Log-loss Scores ICML 2021 9 / 25



Robust Label Inference

Let τ > 0 and σ ∈ {0, 1}N be the (unknown) labeling. The τ -robust label
inference problem is that of recovering σ given `1, . . . , `M , where for all
i ∈ [M], it holds that |LLOSS (ui ;σ)− `i | ≤ τ . Here, M is the number of
queries and ui ∈ [0,1]N are the prediction vectors.
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τ -Robust Label Inference under Arbitrary Precision
with Exponential-time Adversary

Algorithm 1 Label Inference with Bounded Error in the APA Model
(Exponential Adversary)

1: Input: N, upper bound on error τ > 0
2: Output: Labeling σ̂ ∈ {0,1}N

3: Let u = [u1, . . . ,uN ] , where ui ← 32i Nτ/(1 + 32i Nτ ).
4: Obtain the loss score ` using u as the prediction vector.
5: Return σ̂ ← arg minσ∈{0,1}N |LLOSS(u, σ)− `|.

APA: Arbitrary Precision Arithmetic.
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τ -Robust Label Inference under Arbitrary Precision
with Exponential-time Adversary

Let us see why this works.

The main idea is to make the outputs of the Log-loss function distinct for
each labeling.

Define ∆(u) := minσ1,σ2∈{0,1}N |LLOSS (u;σ1)− LLOSS (u;σ2)|.

Our task is to find u such that ∆(u) > 2τ (necessary and sufficient).

L (u;σ1) L (u;σ2)− τ ` L (u;σ1) + τ L (u;σ2)

x

< 2τ

L ≡ LLOSS
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τ -Robust Label Inference under Arbitrary Precision
with Exponential-time Adversary

How to find a vector u such that ∆(u) > 2τ?

For any set S, let µ(S) := minS1,S2⊆S

∣∣∣∑s1∈S1
s1 −

∑
s2∈S2

s2

∣∣∣ denote
the magnitude of the minimum difference between any two subset sums
in S. For example, the set S = {1,2,4, . . . ,2m} has µ(S) = 1 for all m.

Lemma
If all entries in v = [v1, . . . , vN ] are distinct and positive, then

∆

(
v

1 + v

)
=

1
N
µ(ln v),

where ln v := [ln v1, . . . , ln vN ].

We use this lemma by setting u = v
1+v (element-wise).
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τ -Robust Label Inference under Arbitrary Precision
with Exponential-time Adversary

Thus, setting ∆(u) > 2τ is equivalent to setting 1
Nµ(ln v) > 2τ , or

µ(ln v) > 2Nτ . How do we ensure this?

Recall µ
(
{1,2,4, . . . ,2N}

)
= 1.

Set vi = 32i Nτ . Then, ln vi = 2iNτ ln 3 = 2i−1 (2Nτ ln 3).

We can now compute µ ({ln v1, . . . , ln vN}) = 2Nτ ln 3 > 2Nτ .

From this, we obtain the desired prediction vector for τ -robust label
inference as:

ui =
vi

1 + vi
=

32i Nτ

1 + 32i Nτ
.
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τ -Robust Label Inference under Arbitrary Precision
with Exponential-time Adversary

Is it possible to avoid exponentially large entries in vi = 32i Nτ?

Generalized Result from Euler’s Theorem:

Theorem
For any set S ⊂ Q+ with µ(S) > λ for some λ ∈ [0,∞), it must hold that
||S||∞ = Ω(λ2|S|).

Bound for robust vector construction:

Theorem
For sufficiently large N and all τ > 0, any vector u = v

1+v must have

||v||∞ = Ω
(

e2NNτ
)

to allow τ -robust label inference using u.
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τ -Robust Label Inference under Bounded Precision with
Polynomial-time Adversary

Label Inference Attacks from Log-loss Scores ICML 2021 16 / 25



τ -Robust Label Inference under Bounded Precision
with Polynomial-time Adversary

Recall label algorithm in the APA model:

Algorithm 2 Label Inference in APA Model with Exponential Adversary
1: Input: N, upper bound on error τ > 0
2: Output: Labeling σ̂ ∈ {0,1}N

3: Let u = [u1, . . . ,uN ] , where ui ← 32i Nτ/(1 + 32i Nτ ).
4: Obtain the loss score ` using u as the prediction vector.
5: Return σ̂ ← arg minσ∈{0,1}N |Lu (σ)− `|.

Limitations for FPA model and polynomial time adversary:
1 Intermediate computations are exponentially large for

ui ← 32i Nτ/(1 + 32i Nτ ).
2 Iterating over all labelings in arg minσ∈{0,1}N |Lu (σ)− `| infeasible.
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τ -Robust Label Inference under Bounded Precision
with Polynomial-time Adversary

A similar trick to the unnoised case works here – infer a few labels at a
time using

u =

[
3e2Nτ

1 + 3e2Nτ ,
3e4Nτ

1 + 3e4Nτ , . . . ,
3e2mNτ

1 + 3e2mNτ ,
1
2
, . . . ,

1
2

]
.

Theorem
For any error bounded by τ > 0 and φ ≥ 8 + dNτ ln 2e, there exists a
polynomial-time adversary for the τ -label inference problem in the
FPA(φ) model using O

(
N

log N + N
log(φ/Nτ)

)
queries.

Inference is done m = min
{
dlog2 Ne ,

⌊
log2

(
φ−8

Nτ ln 2

)⌋}
labels at a time.
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Empirical Observations
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Experiments on Real Datasets

The list of datasets we use is as follows, fetched from the UCI machine
learning dataset repository3:

1 D1 (IMDB movie review for sentiment analysis – 0 (negative review)
or 1 (positive review);

2 D2 (Banknote Authentication) – 0 (fine) or 1 (forged);
3 D3 (Wisconsin Cancer) – 0 (benign) and 1 (malignant);
4 D4 (Haberman’s Survival) – 0 (survived) and 1 (died).

3https://archive.ics.uci.edu/ml/machine-learning-databases
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Experiments on Real Datasets

Table 2: Experimental results for unnoised label inference with polynomial time
adversary. Here, N is the number of test samples in the dataset and Accq is
the fraction of labels correctly inferred with q queries.

Dataset N Acc1 AccN/5 TimeN/5
D1 25,000 0.4891 1.0 53.41 ms
D2 1,372 0.4446 1.0 0.2 ms
D3 569 0.3448 1.0 0.06 ms
D4 306 0.2647 1.0 0.03 ms
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Experiments on Real Datasets

Figure 1: Accuracy of (unnoised) label inference on dataset D1 as a function of
the number of queries used by the adversary. For N/5 = 5000 queries, all
labels have been correctly inferred.
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Experiments for noised label inference on Simulated
Binary Labelings

Figure 2: Accuracy of single-query (noised) label inference on simulated binary
labelings with bounded error (scale = 0.01, 0.1, and 1).
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Concluding Remarks

We demonstrated that log-loss scores can leak information about the
ground truth labels, even when noised arbitrarily. This information can
be exploited using specially constructed prediction vectors, without any
access to the underlying dataset or model training.

How can we defend against these attacks?
1 Compute loss scores on random subsets.
2 Randomized Response – will impart protection through plausible

deniability.

Future work: Characterize the class of loss functions for which robust
label inference is feasible.
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Thank you for attending the talk!
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