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Transfer From A Zoo of Models
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Models considered in this paper

• Same architecture

• Pretrained with different data, tasks or pretraining algorithms



Zoo-Tuning

Train Data / Test Data

!𝐖!

Train Loss / Prediction

Adaptive
Aggregation

Data Path
Parameter Aggregation

𝐖!
!

𝐖!
"

𝐖!
#

Source Model 1
⋯

m
i⋯

⋯

⋯

𝐖!
! 𝐖$

! 𝐖%
!⋯ ⋯

𝐖!
# 𝐖$

# 𝐖%
#⋯ ⋯

⋯

𝐖!
" 𝐖$

" 𝐖%
"⋯ ⋯

⋯

!𝐖"Adaptive
Aggregation

⋯

Adaptive
Aggregation

!𝐖#

⋯ TargetM
odel



Adaptive Aggregation

!𝒉"&! !𝒉"

𝐖!
"

𝐖%
"

!𝐖"

𝐖$
"

𝐓!"

𝐓%"

𝐓$"

Conv 1×1

ReLU

Conv 1×1

Sigmoid

Pooling

𝐀!"

𝐀$"

𝐀%"

Data Path

Param Aggregation



Adaptive Aggregation

Channel alignment module

• Channels in different pretrained models may have 
different semantic meanings.

• A channel alignment module 𝐓$" that transforms and
aligns channels of different models
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Figure 1. The framework of our proposed method. We derive the target model cW by aggregating the parameters of the source models Wi

in each layer, controlled by the learnable adaptive aggregation modules based on the input data. During training, the adaptive modules
are trained, and the source parameters are tuned to transfer to the target task. After training, the tuned source models are aggregated
depending on each query data for inference.

get task D = {(x, y)}. In transfer learning from a zoo of

models, we consider a more complicated situation where we
have a zoo of pretrained models M = {M1,M2, · · · ,Mm}.
This problem is challenging in two ways: (1) The diverse
pretrained models hold different relationships to the target
tasks, which needs transferring knowledge from different
pretrained models to different extents; (2) Different mod-
els are pretrained on various data and thus store different
knowledge, which may be complementary to each other to
solve the downstream tasks. How to aggregate knowledge
from various pretrained models is an essential but difficult
problem for model zoo transfer learning.

In this paper, we consider the situation that different mod-
els in the zoo have the same architecture but are trained
with different data, tasks, or pretraining algorithms. This
assumption of the same architecture is reasonable and has
its value in practice since architectures such as ResNet (He
et al., 2016) can be widely used in various datasets and
tasks, and diverse pretrained models of these architectures
with rich source knowledge are provided for use. It is eas-
ier and more reliable to apply these models with the same
simple and familiar architectures, especially on new prob-
lems. Besides, The same architecture enables more effective
layer-wise knowledge transfer, which is hard to realize on
different architectures. A more relaxed situation where mod-
els have arbitrary architectures would be interesting and
challenging to explore for future work.

3.2. Zoo-Tuning

We address the problem of transfer learning from a zoo
of models by Zoo-Tuning. The framework is shown in
Figure 1. Zoo-Tuning enables knowledge transfer from

multiple models by adaptively aggregating source model
parameters in each layer, based on the input data, to form the
target model. The adaptive aggregation consists of channel
alignment and gating modules to control the extent of each
model in transfer learning. As the adaptive aggregation
mechanism is lightweight and the target data pass through
the derived target model instead of all source models, the
proposed approach only introduces similar inference time
to a single model, which is computationally efficient. We
further propose a lite version of Zoo-Tuning to reduce the
storage cost.

Channel Alignment. Different models are separately
trained on diverse datasets or tasks, so even parameters
at the same channel of the same layer in different pretrained
models may indicate different semantic meanings. The mis-
aligned channels cause difficulty in aggregating parameters
of different pretrained models. To address the problem,
we adopt a channel alignment module that transforms and
aligns channels of different pretrained models. We consider
parameters Wl

i of a convolutional layer in any source model
Mi with the size Cout ⇥ Cin ⇥ K ⇥ K, where Cout is the
number of output channels, Cin indicates input channels,
and K is the kernel size of the convolutional layer. We
adopt a lightweight convolutional layer Tl

i with 1⇥1 kernel
of size Cout ⇥ Cout ⇥ 1⇥ 1 as the channel alignment mod-
ule. Specifically, the channels in the source convolutional
parameters Wl

i are reorganized by the channel alignment
layer to result in the transformed parameters fWl

i as follows:

fWl
i = Tl

i ⇤Wl
i, (1)

where we also use Tl
i to denote the parameters of the align-

ment module. We show an implementation of the channel
alignment module for source parameters of convolutional

Transformed parameter



Adaptive Aggregation

Data-dependent gating module

• Each data point of each task should have a different 
aggregation since it holds specific relationships with 
source tasks.

• A gating module 𝐀$" for each source model, which
controls the mixing of its parameters 𝐖$
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(b) Integrating AdaAgg Layers in a Residual Block

Figure 2. (a) Illustration of the Adaptively Aggregation Layer. The target input ĥl�1 goes through the gating networks Al
i to compute

gating values. The source parameters Wl
i are first aligned by Tl

i and then aggregated with these gating values to form the target parameters
cWl. The input ĥl�1 is finally forwarded through the layer parameterized by cWl. (b) We can change the layers of the network backbone
into AdaAgg layers to aggregate models in the zoo. Here is an example where the backbone is composed of residual blocks.

layers here. The idea is easy to extend to other kinds of
layers, such as fully connected layers, by employing a linear
alignment layer. We initialize the channel alignment layer
as an identical mapping, which gives the target model a
smooth warm-up from the pretrained weights.

Adaptive Aggregation. With channel-aligned source pa-
rameters, we develop an adaptive aggregation (AdaAgg)
layer to dynamically aggregate source model parameters.
We have two key insights in the design of the AdaAgg layer:
(1) Each data point of each downstream task should have
a different aggregation since each data point holds specific
relationships with source tasks; (2) The aggregation should
be computationally efficient for a large number of source
models. We integrate these two key insights into the design
of the AdaAgg layer. As shown in Figure 2(a), considering
the l-th layer of the network, the AdaAgg layer is equipped
with a gating network Al

i for each source model Mi, which
controls the mixing of its corresponding parameters Wl

i.
The gating network Al

i takes the feature of the previous
layer in the target model ĥl�1 as the input and outputs the
gating value ali. The aligned source parameters fWl

i are
aggregated with the gating values to derive the parameters
of the target model in this layer cWl as follows:

cWl =
mX

i=1

alifWl
i =

mX

i=1

Al
i(ĥ

l�1)
�
Tl

i ⇤Wl
i

�
, (2)

We consider lightweight gating networks to reduce the com-
putation and storage cost of the gating network. For exam-
ple, for a convolutional layer, the gating network consists
of a global average pooling layer, 2 convolutional layers
with 1⇥ 1 kernel, and a sigmoid activation function. Such
design brings little additional computational cost of the gat-

ing network compared to processing data with the original
convolution operation, even with a large-scale model zoo.

We can easily change the backbone layers of source models
into AdaAgg layers to aggregate source models’ parameters
in each layer. In Figure 2(b), we give an example of the
residual block. With the target model parameters, the target
data are passed through the target model for training and in-
ference. We can solve the optimization problem of adapting
the model zoo to the target task as follows:

min
⇥

E(x,y)⇠DL
⇣
fL(·; cWL) � · · · � f1(x; cW1), y

⌘
, (3)

where D = {(x, y)} is the target dataset, L is the total
number of layers, f l is the operation of the l-th layer pa-
rameterized by cWl and L is the loss for the target task.
⇥ = (Wi,Ai,Ti) includes source models parameters Wl

i,
channel alignment parameters Tl

i, and gating network pa-
rameters Al

i in all AdaAgg layers. All of these parameters
are adaptively trained or tuned to fit for the target task.

3.3. Lite Zoo-Tuning

The adaptive aggregation introduced above is computation-
ally efficient both during training and inference but still
requires all the source parameters at the inference stage, as
the gating values can be computed only when the target data
is presented at inference time. As shown in Figure 3, to
further save the storage for applying Zoo-Tuning to devices
with limited resource, we relax the dependency of the gating
values on each individual target sample to the dependency
on the entire dataset, resulting in a unified gating value for
all data during inference. During training, for a layer l of a
source model i, we firstly compute gating values for each

Target parameter Gating value
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Figure 3. Lite Zoo-Tuning learns a unified adaptive aggregation
for all data in the target task based on the temporal ensemble of
average gating values of each data batch. Thus, we just need to
store the aggregated target model cW for all data during inference.

sample in the batch, denoted as ali,j , where j is the index
of the sample. Then we compute the batch average gating
values and their temporal ensemble over the training batches
as follows:

āli = ↵ · āli + (1� ↵)

0

@1

b
·

bX

j=1

ali,j

1

A . (4)

We use the batch average values for all training data in
the batch and update the temporal ensemble values with
↵ = 0.9, which is commonly used in temporal ensemble
techniques. The temporal ensemble values reflect how the
target task relies on each source pretrained model and thus
serve as the unified gating values for all target data in infer-
ence. Now all target data share the same gating values, so
we can pre-compute the aggregation of source parameters
to form the target model before inference as follows:

cWl =
mX

i=1

ālifWl
i. (5)

The key difference between Eqn. (2) and Eqn. (5) is that āli
in Eqn. (5) is shared by all test data and does not change
with each sample. So in inference, the target data can be
directly forwarded through the pre-aggregated target model.
Thus, the cost of lite Zoo-Tuning model in storage and
computation is close to one single model.

3.4. Complexity Analysis

As we propose layer-wise adaptive transfer of source param-
eters, for simplicity, we only analyze the complexity of one
layer, which can be extended to the whole model. We con-
sider aggregating convolutional layers of m pretrained mod-
els. Suppose the dimension of the layer is Cout⇥Cin⇥K⇥K
where Cout and Cin are the number of output and input chan-
nels, and K is the kernel size. The input feature map has

the dimension Cin ⇥H ⇥W , where H and W are spatial
dimensions. W means the width of the feature map only in
this Section 3.4 to avoid notation abuse. The original con-
volution operation has the complexity O

�
HWK2CoutCin

�
.

Zoo-Tuning introduces additional computations for chan-
nel alignment, gating values, and adaptive aggregation
with the computational complexity of O

�
mK2C2

outCin
�
,

O
�
HWCin +mC2

in
�

and O
�
mK2CoutCin

�
respectively,

which is O
�
mK2C2

outCin +HWCin +mC2
in
�

in to-
tal. During inference, as channel alignment is data-
independent and can be pre-computed, the cost becomes
O
�
mK2CoutCin +HWCin +mC2

in
�
. Compared with the

original cost of convolution operation, the additional cost
for Zoo-Tuning is small. We will also empirically com-
pare the computational complexity of other transfer learning
methods and different variants of Zoo-Tuning.

4. Experiments

We conduct experiments within three experimental settings.
In the first setting, we use a zoo of reinforcement learning
models pretrained on various Atari games and transfer to a
different set of tasks. In the other two settings, we use a zoo
of diverse computer vision models pretrained on various
large-scale datasets and transfer to multiple downstream
tasks on classification and facial landmark detection. All
experiments are implemented in the PyTorch framework.

4.1. Transfer Learning in Reinforcement Learning

To demonstrate the generalizability of the proposed Zoo-
Tuning method to various domains, we first conduct experi-
ments on reinforcement learning models.

Benchmarks. Although many reinforcement learning algo-
rithms can achieve much better performance than humans
on Atari games, they are still far less efficient than a human
learner. So we measure our method at 100k interaction steps
(400k environment steps with action repeat of 4) on Atari,
which corresponds to the time for a human learner. We use
the Seaquest and Riverraid tasks as source tasks and learn
an optimal policy by reinforcement learning for each task.
We transfer the pretrained reinforcement learning models to
3 downstream tasks: Alien, Gopher, and JamesBond.

Implementation Details. For the learning algorithm, we
follow the implementation of Data-Efficient Rainbow (van
Hasselt et al., 2019), which modifies hyper-parameters of
Rainbow (Hessel et al., 2018) for data efficiency. The model
of Data-Efficient Rainbow consists of 2 convolutional layers:
32 filters of size 5⇥ 5 with the stride of 5 and 64 filters of
size 5⇥5 with the stride of 5, followed by a flatten layer and
2 noisy linear layers (Fortunato et al., 2018) with the hidden
size of 256. We use Adam optimizer(Kingma & Ba, 2015)
with a learning rate of 1 ⇥ 10�4. Other hyper-parameters
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Figure 3. Lite Zoo-Tuning learns a unified adaptive aggregation
for all data in the target task based on the temporal ensemble of
average gating values of each data batch. Thus, we just need to
store the aggregated target model cW for all data during inference.
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as follows:

āli = ↵ · āli + (1� ↵)

0

@1

b
·

bX

j=1

ali,j

1

A . (4)

We use the batch average values for all training data in
the batch and update the temporal ensemble values with
↵ = 0.9, which is commonly used in temporal ensemble
techniques. The temporal ensemble values reflect how the
target task relies on each source pretrained model and thus
serve as the unified gating values for all target data in infer-
ence. Now all target data share the same gating values, so
we can pre-compute the aggregation of source parameters
to form the target model before inference as follows:

cWl =
mX
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ālifWl
i. (5)

The key difference between Eqn. (2) and Eqn. (5) is that āli
in Eqn. (5) is shared by all test data and does not change
with each sample. So in inference, the target data can be
directly forwarded through the pre-aggregated target model.
Thus, the cost of lite Zoo-Tuning model in storage and
computation is close to one single model.

3.4. Complexity Analysis

As we propose layer-wise adaptive transfer of source param-
eters, for simplicity, we only analyze the complexity of one
layer, which can be extended to the whole model. We con-
sider aggregating convolutional layers of m pretrained mod-
els. Suppose the dimension of the layer is Cout⇥Cin⇥K⇥K
where Cout and Cin are the number of output and input chan-
nels, and K is the kernel size. The input feature map has

the dimension Cin ⇥H ⇥W , where H and W are spatial
dimensions. W means the width of the feature map only in
this Section 3.4 to avoid notation abuse. The original con-
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O
�
mK2CoutCin +HWCin +mC2

in
�
. Compared with the

original cost of convolution operation, the additional cost
for Zoo-Tuning is small. We will also empirically com-
pare the computational complexity of other transfer learning
methods and different variants of Zoo-Tuning.

4. Experiments

We conduct experiments within three experimental settings.
In the first setting, we use a zoo of reinforcement learning
models pretrained on various Atari games and transfer to a
different set of tasks. In the other two settings, we use a zoo
of diverse computer vision models pretrained on various
large-scale datasets and transfer to multiple downstream
tasks on classification and facial landmark detection. All
experiments are implemented in the PyTorch framework.

4.1. Transfer Learning in Reinforcement Learning

To demonstrate the generalizability of the proposed Zoo-
Tuning method to various domains, we first conduct experi-
ments on reinforcement learning models.

Benchmarks. Although many reinforcement learning algo-
rithms can achieve much better performance than humans
on Atari games, they are still far less efficient than a human
learner. So we measure our method at 100k interaction steps
(400k environment steps with action repeat of 4) on Atari,
which corresponds to the time for a human learner. We use
the Seaquest and Riverraid tasks as source tasks and learn
an optimal policy by reinforcement learning for each task.
We transfer the pretrained reinforcement learning models to
3 downstream tasks: Alien, Gopher, and JamesBond.

Implementation Details. For the learning algorithm, we
follow the implementation of Data-Efficient Rainbow (van
Hasselt et al., 2019), which modifies hyper-parameters of
Rainbow (Hessel et al., 2018) for data efficiency. The model
of Data-Efficient Rainbow consists of 2 convolutional layers:
32 filters of size 5⇥ 5 with the stride of 5 and 64 filters of
size 5⇥5 with the stride of 5, followed by a flatten layer and
2 noisy linear layers (Fortunato et al., 2018) with the hidden
size of 256. We use Adam optimizer(Kingma & Ba, 2015)
with a learning rate of 1 ⇥ 10�4. Other hyper-parameters
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Figure 4. Results of transferring pretrained models to downstream tasks in the reinforcement learning of Atari games.

are kept the same as those in van Hasselt et al. (2019). We
repeat each experiment 5 times with different seeds and
report the mean and variance of the results.

Results. As shown in Figure 4, in all the downstream
tasks, Zoo-Tuning outperforms transferring from a single
pretrained model and Knowledge Flow (Liu et al., 2019),
which also transfers from multiple pretrained models. The
results indicate that Zoo-Tuning enables utilizing knowl-
edge from pretrained policies to promote target tasks by
adaptive transfer. Simply fine-tuning from each pretrained
model performs similarly with training from scratch, and
even a little worse, demonstrating that when the source and
target tasks have a large gap, brutely transferring knowledge
may cause negative transfer.

4.2. Transfer Learning in Image Classification

For the zoo of models in the classification setting, we use 5
ResNet-50 models pretrained on representative computer vi-
sion datasets: (1) Supervised pretrained model and (2) Unsu-
pervised pretrained model with MOCO (He et al., 2020) on
ImageNet (Russakovsky et al., 2015), (3) Mask R-CNN (He
et al., 2017) model for detection and instance segmentation,
(4) DeepLabV3 (Chen et al., 2018) model for semantic seg-
mentation, and (5) Keypoint R-CNN model for keypoint
detection, pretrained on COCO-2017 challenge datasets of
each task. In total, the zoo of models are trained on mil-

lions of images across a wide range of computer vision

tasks, which contains abundant knowledge in the computer

vision domain. All pretrained models are found in torchvi-
sion (Paszke et al., 2017) or original implementation.

Benchmarks. We divide the 7 downstream tasks into
three types of benchmarks: General benchmarks, Fine-
grained benchmarks, and Specialized benchmarks, to ver-
ify the efficacy of the proposed Zoo-Tuning on different
kinds of images: (1) General benchmarks with CIFAR-

100 (Krizhevsky et al., 2009) and COCO-70: CIFAR-100

contains 100 classes with 600 images per class, which

are split into 500 training images and 100 testing images.
COCO-70 is constructed by cropping objects for each im-
age in COCO dataset (Lin et al., 2014) and removing min-
imal items (with height and width). It contains 70 classes
with more than 1, 000 images per category. (2) Fine-grained

benchmarks with FGVC Aircraft (Maji et al., 2013), Stan-

ford Cars (Krause et al., 2013) and MIT-Indoors (Quat-
toni & Torralba, 2009): FGVC Aircraft is a benchmark
for the fine-grained aircraft categorization. It has 100 cate-
gories containing 100 images each. Stanford Cars contains
16, 185 images for 196 classes of cars. The data are split
into 8, 144 training images and 8, 041 testing images. MIT-

Indoors contains 67 Indoor categories, and a total of 15, 620
images. We use a subset of the dataset that has 80 images
for training and 20 images for testing per class. (3) Special-

ized benchmarks with DMLab (Beattie et al., 2016) and
EuroSAT (Helber et al., 2019): DMLab contains frames
observed by the agent acting in the DeepMind Lab envi-
ronment, which are annotated by the distance between the
agent and various objects present in the environment. The
data are split into 65, 550 training images, 22, 628 valida-
tion images and 22, 735 test images. EuroSAT dataset is
based on Sentinel-2 satellite images covering 13 spectral
bands and consisting of 10 classes with 27, 000 labeled and
geo-referenced samples.

Implementation Details. We follow the common fine-
tuning principle described in (Yosinski et al., 2014) and
replace the last task-specific classification layer with a ran-
domly initialized fully connected layer. We adopt SGD with
a learning rate of 0.01 and momentum of 0.9 with the same
training strategy (total 15k iterations for fine-tuning with
learning rate decay per 6k iterations) for all pretrained mod-
els, compared methods and the proposed Zoo-Tuning. This
ensures a fair comparison between different methods and
avoids over-tuning on specific tasks. We adopt a batch size
of 48, and all images are randomly resized and cropped to
224⇥ 224 as the input of the network. More details can be
found in supplementary materials.



Transfer Learning in Facial Landmark Detection

• Pretrained Models：1) ImageNet supervised pretraining ；2) ImageNet MOCO pretraining；3) Mask R-CNN (detection 
and instance segmentation) ；4) DeepLabV3 (semantic segmentation)；5) Keypoint R-CNN (keypoint detection)
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3148 training images. We evaluate the performance using
the full set containing 689 images. The WFLW dataset is a
dataset built on the WIDER Face (Yang et al., 2016). There
are 7500 training and 2500 testing images with 98 manual
annotated landmarks. The COFW dataset consists of 1345
training and 507 testing faces with 29 facial landmarks.

Table 2. Comparison of NME results on facial landmark detection
tasks: 300W, WFLW, and COFW.

MODEL 300W WFLW COFW

SCRATCH 3.66 5.33 4.20
IMAGENET SUP. 3.52 4.90 3.66
MOCO PT. 3.45 4.75 3.63
MASKRCNN PT. 3.53 4.87 3.67
DEEPLAB PT. 3.53 4.89 3.73
KEYPOINT PT. 3.50 4.90 3.66

ENSEMBLE 3.33 4.64 3.46
DISTILL 3.45 4.74 3.53
KNOWLEDGE FLOW 3.71 5.28 4.58

ZOO-TUNING 3.41 4.58 3.51

Implementation Details. We generally follow the protocol
in Sun et al. (2019). We follow the standard training scheme
in (Wu et al., 2018). All the faces are cropped by the pro-
vided boxes according to the center location and resized to
256⇥ 256. We augment the data by ±30 degrees in-plane
rotation, 0.75 � 1.25 scaling, and randomly flipping. The
models are trained for 60 epochs with a batch size of 16.
We use Adam optimizer (Kingma & Ba, 2015). The base
learning rate is 1 ⇥ 10�4 and is decayed by a rate of 0.1
at the 30-th and 50-th epochs. In testing, each keypoint
location is predicted by transforming the highest heat value
location to the original image space and adjusting it with a
quarter offset in the direction from the highest response to
the second highest response (Chen et al., 2017).

Results. We use the inter-ocular distance as normalization
and report the normalized mean error (NME) for evaluation
in Table 2. Comparing fine-tuning from each single pre-
trained model, we can observe that the MOCO (He et al.,
2020) pretrained model generally outperforms other pre-
trained models when transferring to the facial landmark
detection tasks. The results confirm that even commonly-
used models such as the ImageNet pretrained model cannot
dominate all downstream tasks, and it is important to select
the more suitable pretrained models for the target task. Zoo-
Tuning addresses the challenge by gating networks trained
on the target task and consistently outperforms transferring
from each single model. Knowledge Flow achieves little
improvement than training from scratch and even performs
worse on 300W and COFW. This method uses pretrained
models as teachers to guide the learning of the student net-

work. But this kind of guidance cannot fully utilize and
adapt the knowledge in the zoo, especially when the target
tasks are not close to pretrained tasks. Zoo-Tuning adapts
the whole model zoo to the target, which is a more effective
way of knowledge transfer. Zoo-Tuning achieves compa-
rable performance with the ensemble, but with much less

computational cost during training and inference.

4.4. Analysis

Variants of Zoo-Tuning. We compare Zoo-Tuning with its
variants to demonstrate the efficacy of different modules in
Zoo-Tuning. We use all the five pretrained computer vision
models described above and transfer them to the COCO-70
dataset and the WFLW dataset. From Table 3, we have the
following observations: (1) Zoo-Tuning outperforms Zoo-
Tuning w/o T, which demonstrates that channel alignment
of source parameters improves the performance for adaptive
aggregation. (2) Zoo-Tuning w/o T and Zoo-Tuning out-
perform average aggregation with a large margin. Average
aggregation aggregates all the source parameters with the
same weight, which treats all source parameters equally.
The results demonstrate that it is essential to learn the gating
values on the target task and adaptively fit the aggregation
to better serve the target task.

Table 3. Ablation study on variants of Zoo-Tuning.

METHOD COCO WFLW

AVERAGE AGGREGATION 80.53 4.75
ZOO-TUNING W/O T 83.92 4.64
ZOO-TUNING 84.91 4.58

Visualization of Gating Values. We visualize the gating
values in each layer of each source model learned by Zoo-
Tuning on the CIFAR-100 dataset. As shown in Figure 5,
different source models have diverse gating values, which
indicates that different source pretrained models have differ-
ent relationships to the target task, and Zoo-Tuning learns
to aggregate the source models for the target task adap-
tively. Different layers show different gating values, which
matches the study on deep networks that different layers con-
tain different knowledge and exhibit different transferability.
The gating values show some insights on the transferability
of the pretrained models. Overall, ImageNet supervised
learning model generally has the highest values because
ImageNet is more closely related to the CIFAR-100. This
could also be verified by the results of fine-tuning from each
single pretrained model in Table 1. Besides, the advantage
of the ImageNet supervised model is mainly on top layers,
and other networks also have high values in the bottom and
intermediate layers. This matches the previous observa-
tion that knowledge in deep networks goes from general to
task-specific as the layer goes deeper.
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Table 1. Comparison of top-1 accuracy(%) and complexity on the classification benchmarks including General benchmark, Fine-grained
benchmark, and Specialized benchmark.
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IMAGENET SUP. 81.18 81.97 84.63 89.38 73.69 74.57 98.43 83.41 4.12 23.71M 4.12 23.71M
MOCO PT. 75.31 75.66 83.44 85.38 70.98 75.06 98.82 80.66 4.12 23.71M 4.12 23.71M
MASKRCNN PT. 79.12 81.64 84.76 87.12 73.01 74.73 98.65 82.72 4.12 23.71M 4.12 23.71M
DEEPLAB PT. 78.76 80.70 84.97 88.03 73.09 74.34 98.54 82.63 4.12 23.71M 4.12 23.71M
KEYPOINT PT. 76.38 76.53 84.43 86.52 71.35 74.58 98.34 81.16 4.12 23.71M 4.12 23.71M

ENSEMBLE 82.26 82.81 87.02 91.06 73.46 76.01 98.88 84.50 20.60 118.55M 20.60 118.55M
DISTILL 82.32 82.44 85.00 89.47 73.97 74.57 98.95 83.82 24.72 142.28M 4.12 23.71M
KNOWLEDGE FLOW 81.56 81.91 85.27 89.22 73.37 75.55 97.99 83.55 28.83 169.11M 4.12 23.71M

LITE ZOO-TUNING 83.39 83.50 85.51 89.73 75.12 75.22 99.12 84.51 4.53 130.43M 4.12 23.71M
ZOO-TUNING 83.77 84.91 86.54 90.76 75.39 75.64 99.12 85.16 4.53 130.43M 4.18 122.54M

Results. We report the top-1 accuracy on the test data of
each task and the complexity of each method. For our
method, we report Zoo-Tuning and lite Zoo-Tuning. For the
single-model transfer method, we compare with fine-tuning
from every single pretrained model. For methods using all
pretrained models, we compare with three methods: using
the ensemble of fine-tuned source models for prediction,
distilling from the ensemble, and Knowledge Flow (Liu
et al., 2019), which is designed to transfer from multiple
models. From Table 1. We have the following observations:

On all the three benchmarks, Zoo-Tuning consistently out-
performs fine-tuning from each single pretrained model,
which indicates that Zoo-Tuning successfully aggregates
and utilizes the rich knowledge in the whole zoo of models.

Compared with the methods using all pretrained models,
Zoo-Tuning shows higher or comparable performance on
most of the tasks. Compared with the parameters in the
model zoo, the additional parameters in Zoo-Tuning is about
10%, which shows that the adaptive modules are lightweight.
With the adaptive parameter aggregation mechanism, Zoo-
Tuning is more computationally efficient. Note that the
ensemble predictions require fine-tuning all the candidate
pretrained models on the target task firstly. Even at inference
time, each query sample should go through all the fine-tuned
models to get the final prediction, causing high inference
cost. Distilling and knowledge flow show similar inference
costs as Zoo-Tuning, but Zoo-Tuning achieves higher per-
formance on almost all the tasks. The results demonstrate
that Zoo-Tuning is a both effective and efficient solution to
transfer learning from a zoo of models.

Lite Zoo-Tuning also outperforms compared methods on
average accuracy. We specially compare it with distilling
from the ensemble (Distill) since they are both efficient in

inference. Although the performance gain is not large, lite
Zoo-Tuning still outperforms Distill consistently on all tasks
and achieves greater advantages in the training cost. This is
because Distill still needs to forward data through all source
models, while lite Zoo-Tuning only needs to pass the data
through the aggregated model. Furthermore, Distill needs
to fine-tune all the pretrained models on the target data first
and then distill a target model from the ensemble outputs
of fine-tuned models, which requires a high training cost
linearly increasing with the number of source models. The
results match the goal of lite Zoo-Tuning to substantially
reduce the storage cost in inference while keeping relatively
high performance, which is more scalable when training
with a large number of source models.

Zoo-Tuning achieves higher accuracy than lite Zoo-
Tuning, which demonstrates that capturing fine-grained data-
dependent gating values would help to adapt the pretrained
models to the target task but with more cost of storage and
computation in inference. Lite Zoo-Tuning costs the same
GFLOPs and parameters as the single model in inference,
with slight performance drop than Zoo-Tuning, which serves
as a trade-off between performance and efficiency.

4.3. Transfer Learning in Facial Landmark Detection

Benchmarks. To explore the usage of Zoo-Tuning on more
diverse and complex downstream vision tasks, we use the
same model zoo as the image classification tasks in Sec-
tion 4.2 and consider transferring to three facial landmark
detection tasks, 300W (Sagonas et al., 2013), WFLW (Wu
et al., 2018), and COFW (Burgos-Artizzu et al., 2013).
The 300W is a combination of HELEN (Le et al., 2012),
LFPW (Belhumeur et al., 2013), AFW (Zhu & Ramanan,
2012), XM2VTS and IBUG datasets, where each face has
68 landmarks. We follow (Ren et al., 2016) and use the

Transfer Learning in Image Classification

• Pretrained Models：1) ImageNet supervised pretraining ；2) ImageNet MOCO pretraining；3) Mask R-CNN (detection 
and instance segmentation) ；4) DeepLabV3 (semantic segmentation)；5) Keypoint R-CNN (keypoint detection)
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