Background	OOD	

Heterogeneous Risk Minimization(HRM)

Experiment Results 0000000

Heterogeneous Risk Minimization

International Conference on Machine Learning 2021

Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen

Department of Computer Science and Technology, Tsinghua University

Background of OOD Generalization problem	Limitations of Invariant Learning	Heterogeneous Risk Minimization(HRM)	

- 2 Limitations of Invariant Learning
- **3** Heterogeneous Risk Minimization(HRM)
- **4** Experiment Results

Background of OOD Generalization problem	Limitations of Invariant Learning	Heterogeneous Risk Minimization(HRM)	
●000			

- 2 Limitations of Invariant Learning
- **3** Heterogeneous Risk Minimization(HRM)
- **4** Experiment Results

Background	of OOD	Generalization	problem
0000			

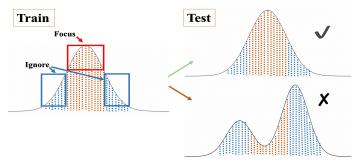
Heterogeneous Risk Minimization(HRM)

Experiment Results

Empirical Risk Minimization(ERM)

$$\theta_{ERM} = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; X_i, Y_i)$$
(1)

- Optimize the average error oof data points.
- Focus on the major group of data.
- Ignore the minor group of data \rightarrow Break down under distributional shifts



Heterogeneous Risk Minimization

Background	of OOD	Generalization	problem
0000			

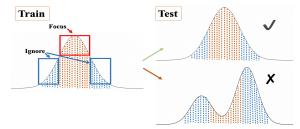
Heterogeneous Risk Minimization(HRM)

Experiment Results

Latent Heterogeneity in Data

Data are collected from multiple sources, which induces latent heterogeneity.

- ERM excessively focuses on the majority and ignores the minor components in data.
- Overall Good = Majority Perfect + Minority Bad
- Majority and Minority can change across different data sources/environments.
- Latent Heterogeneity renders ERM break down under distributional shifts.



Insights: We should leverage the latent heterogeneity in data and develop more rational risk minimization approach to achieve Majority Good and Minority Good, resulting in our Heterogeneous Risk Minimization.

Heterogeneous Risk Minimization(HRM) 000 Experiment Results

Out-of-Distribution Generalization Problem(OOD Problem)

Out-of-Distribution Generalization Problem(OOD Problem) is proposed in order to guarantee the generalization ability under distributional shifts, which can be formalized as:

$$\theta_{OOD} = \arg\min_{\theta} \max_{e \in \operatorname{supp}(\mathcal{E})} \mathcal{L}^{e}(\theta; X, Y)$$
(2)

where

- *E* is the random variable on indices of all possible environments, and for each environment *e* ∈ supp(*E*), the data distribution is denoted as *P*^e(*X*, *Y*).
- The data distribution $P^e(X, Y)$ can be quite different among environments in $supp(\mathcal{E})$.
- $\mathcal{L}^{e}(\theta; X, Y)$ denotes the risk of predictor θ on environment e, whose formulation is given by:

$$\mathcal{L}^{e}(\theta; X, Y) = \mathbb{E}_{X, Y \sim P^{e}}[\ell(\theta; X, Y)]$$
(3)

- OOD problem hopes to optimize the worst-case risk of all possible environments or distributions in $\mathrm{supp}(\mathcal{E})$

Background of OOD Generalization problem	Limitations of Invariant Learning	
	•000	

2 Limitations of Invariant Learning

3 Heterogeneous Risk Minimization(HRM)

4 Experiment Results

Limitations of Invariant Learning

Heterogeneous Risk Minimization(HRM)

Experiment Results

Invariance Assumption and MIP

Assumption (Invariance Assumption)

There exists random variable $\Phi^*(X)$ such that the following properties hold:

1 Invariance property: for all $e_1, e_2 \in \text{supp}(\mathcal{E})$, we have

$$P^{e_1}(Y|\Phi^*(X)) = P^{e_2}(Y|\Phi^*(X))$$
(4)

2 Sufficiency property: $Y = f(\Phi^*) + \epsilon, \ \epsilon \perp X.$

To obtain the invariant predictor $\Phi^*(X)$, one can seeks for the **Maximal Invariant Predictor**¹², which is defined as follows:

Definition (Invariance Set & Maximal Invariant Predictor)

The invariance set ${\mathcal I}$ with respect to ${\mathcal E}$ is defined as:

$$\mathcal{I}_{\mathcal{E}} = \{\Phi(X) : Y \perp \mathcal{E} | \Phi(X)\} = \{\Phi(X) : H[Y|\Phi(X)] = H[Y|\Phi(X), \mathcal{E}]\}$$
(5)

where $H[\cdot]$ is the Shannon entropy of a random variable. The corresponding maximal invariant predictor (MIP) of $\mathcal{I}_{\mathcal{E}}$ is defined as:

$$S = \arg \max_{\Phi \in \mathcal{I}_{\mathcal{E}}} I(Y; \Phi)$$
(6)

where $I(\cdot; \cdot)$ measures Shannon mutual information between two random variables.

¹Chang, S., Zhang, Y. et al. (2020, November). Invariant rationalization.

²Koyama, M., & Yamaguchi, S. When is invariance useful in an Out-of-Distribution Generalization problem ?

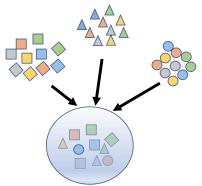
Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen

Department of Computer Science and Technology, Tsinghua University

Background of OOD Generalization problem	Limitations of Invariant Learning ○○●○	Experiment Results

No Training Environments

Modern datasets are frequently assembled by merging data from multiple sources without explicit source labels, which means there are not multiple environments but only one pooled dataset.



Background of OOD Generalization problem	Limitations of Invariant Learning 000●	Experiment Results 0000000

Quality of Training Environments

• The flow of Invariant Learning methods:

Given $\mathcal{E}_{tr} \to \text{Find MIP } \Phi^*_{tr}$ of $\mathcal{I}_{\mathcal{E}_{tr}} \to \text{Predict using } \Phi^*_{tr} \to \text{OOD "Optimal?"}$

• Recall the definition of MIP:

$$\arg\max_{\Phi\in\mathcal{I}_{\mathcal{E}}}I(Y;\Phi)\tag{7}$$

- 1. MIP relies on the invariance set $\mathcal{I}_{\mathcal{E}}$
- 2. Invariance set $\mathcal{I}_{\mathcal{E}}$ relies on the given environments \mathcal{E} .
- What happens when \mathcal{E} is replaced by \mathcal{E}_{tr} ?
 - 1. $\operatorname{supp}(\mathcal{E}_{tr}) \subset \operatorname{supp}(\mathcal{E})$
 - 2. $\mathcal{I}_{\mathcal{E}} \subset \mathcal{I}_{\mathcal{E}_{tr}}$
 - 3. Φ_{tr}^* NOT INVARIANT.

Remark: We need training environments where $\mathcal{I}_{\mathcal{E}_{tr}} \rightarrow \mathcal{I}_{\mathcal{E}}$

Background of OOD Generalization problem	Heterogeneous Risk Minimization(HRM)	
	000	

- 2 Limitations of Invariant Learning
- 3 Heterogeneous Risk Minimization(HRM)
- **4** Experiment Results

Background of OOD Generalization problem	Heterogeneous Risk Minimization(HRM)	Experiment Results
0000	O●O	0000000
HRM Problem		

Assumption (Heterogeneity Assumption)

For random variable pair (X, Φ^*) and Φ^* satisfying the Invariance Assumption, using functional representation lemma³, there exists random variable Ψ^* such that $X = X(\Phi^*, \Psi^*)$, then we assume $P^e(Y|\Psi^*)$ can arbitrary change across environments $e \in \operatorname{supp}(\mathcal{E})$.

Problem (Heterogeneous Risk Minimization Problem)

Given heterogeneous dataset $D = \{D^e\}_{e \in \operatorname{supp}(\mathcal{E}_{latent})}$ without environment labels, the task is to generate environments \mathcal{E}_{learn} with minimal $|\mathcal{I}_{\mathcal{E}_{learn}}|$ and learn invariant model under learned \mathcal{E}_{learn} with good OOD performance.

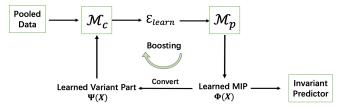
• This work temporarily focuses on a simple but general setting, where $X = [\Phi^*, \Psi^*]^T$ in raw feature level and Φ^*, Ψ^* satisfy the Invariance Assumption.

Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen

³El Gamal, A. and Kim, Y.-H. Network information theory. Network Information Theory, 12 2011.

Background of OOD Generalization problem	Heterogeneous Risk Minimization(HRM) 00●	Experiment Results 0000000
The Whole Algorithm		

Our HRM contains two modules, named Heterogeneity Identification module M_c and Invariant Prediction module M_p .



- The two modules can **mutually promote** each other, meaning that the invariant prediction and the quality of \mathcal{E}_{learn} can both get better and better.
- We adopt feature selection to accomplish the conversion from $\Phi(X)$ to $\Psi(X)$.
- Under our raw feature setting, we simply let $\Phi(X) = M \odot X$ and $\Psi(X) = (1 M) \odot X$.

Background of OOD Generalization problem	Limitations of Invariant Learning	Heterogeneous Risk Minimization(HRM)	Experiment Results
			000000

- 2 Limitations of Invariant Learning
- **③** Heterogeneous Risk Minimization(HRM)

4 Experiment Results

Heterogeneous Risk Minimization(HRM)

Experiment Results

Baselines & Evaluation Criterions

Baselines:

- Empirical Risk Minimization(ERM): $\min_{\theta} \mathbb{E}_{P_0}[\ell(\theta; X, Y)]$
- Distributionally Robust Optimization(DRO[1]): $\min_{\theta} \sup_{Q \in W(Q, P_0) \le \rho} \mathbb{E}_Q[\ell(\theta; X, Y)]$
- Environment Inference for Invariant Learning(EIIL[2]):

$$\min_{\Phi} \max_{u} \sum_{e \in \mathcal{E}} \frac{1}{N_e} \sum_{i} u_i(e) \ell(w \odot \Phi(x_i), y_i) + \sum_{e \in \mathcal{E}} \lambda \|\nabla_{w|w=1.0} \frac{1}{N_e} \sum_{i} u_i(e) \ell(w \odot \Phi(x_i), y_i)\|_2$$
(8)

• Invariant Risk Minimization(IRM[3]) with environment \mathcal{E}_{tr} labels:

$$\min_{\Phi} \sum_{e \in \mathcal{E}_{tr}} \mathcal{L}^e + \lambda \|\nabla_{w|w=1.0} \mathcal{L}^e(w \odot \Phi)\|^2$$
(9)

Evaluation Criterion:

- Mean_Error: Mean_Error = $\frac{1}{|\mathcal{E}_{test}|} \sum_{e \in \mathcal{E}_{test}} \mathcal{L}^e$
- Std_Error: Std_Error = $\sqrt{\frac{1}{|\mathcal{E}_{test}| 1} \sum_{e \in \mathcal{E}_{test}} (\mathcal{L}^e \text{Mean}_Error)^2}$

• Max_Error: Max_Error =
$$\max_{e \in \mathcal{E}_{test}} \mathcal{L}^e$$

Background of OOD Generalization problem 0000		Experiment Results 0000000
Selection Bias		

• Setting: $X = [\Phi^*, \Psi^*]^T \in \mathbb{R}^d$ and $Y = f(\Phi^*) + \epsilon$ and that $P(Y|\Phi^*)$ remains invariant across environments while $P(Y|\Psi^*)$ changes arbitrarily. We select data points according to a certain variable set $V_b \subset \Psi^*$:

$$\hat{P}(x) = \prod_{v_i \in V_b} |r|^{-5*|f(\phi^*) - sign(r) * v_i|}$$
(10)

where |r| > 1, $V_b \in \mathbb{R}^{n_b}$ and $\hat{P}(x)$ denotes the probability of point x to be selected.

- Training: sum = 2000 data points, where $\kappa = 95\%$ points from environment e_1 with a predefined r and $1 \kappa = 5\%$ points from e_2 with r = -1.1.
- Testing: 10 environments with $r \in [-3, -2.7, -2.3, \dots, 2.3, 2.7, 3.0]$.

Some demonstrations:

- |r| eventually controls the strengths of the spurious correlation between V_b and Y, the larger |r|, the more biased the data are.
- sign(r) controls the direction of the spurious correlation between V_b and Y.

Background of OOD Generalization problem		Experiment Results

Selection Bias Results

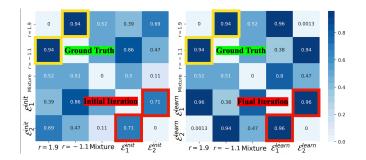
1: Results in selection bias simulation experiments of different methods with varying selection bias r_{1} and dimensions n_{b} and d of training data, and each result is averaged over ten times runs.

Scenario 1: varying selection bias rate r $(d = 10, n_b = 1)$									
r	r = 1.5		r = 1.9			r = 2.3			
Methods	Mean_Error	Std_Error	Max_Error	Mean_Error	Std_Error	Max_Error	Mean_Error	Std_Error	Max_Error
ERM	0.476	0.064	0.524	0.510	0.108	0.608	0.532	0.139	0.690
DRO	0.467	0.046	0.516	0.512	0.111	0.625	0.535	0.143	0.746
EIIL	0.477	0.057	0.543	0.507	0.102	0.613	0.540	0.139	0.683
IRM(with \mathcal{E}_{tr} label)	0.460	0.014	0.475	0.456	0.015	0.472	0.461	0.015	0.475
HRM ^s	0.465	0.045	0.511	0.488	0.078	0.577	0.506	0.096	0.596
HRM	0.447	0.011	0.462	0.449	0.010	0.465	0.447	0.011	0.463
		S	cenario 2: vary	ing dimension a	$r = 1.9, n_E$	= 0.1d)			
d	d = 10		d = 20		d = 40				
Methods	Mean_Error	Std_Error	Max_Error	Mean_Error	Std_Error	Max_Error	Mean_Error	Std_Error	Max_Error
ERM	0.510	0.108	0.608	0.533	0.141	0.733	0.528	0.175	0.719
DRO	0.512	0.111	0.625	0.564	0.186	0.746	0.555	0.196	0.758
EIIL	0.507	0.102	0.613	0.543	0.147	0.699	0.542	0.178	0.727
IRM(with \mathcal{E}_{tr} label)	0.456	0.015	0.472	0.484	0.014	0.489	0.500	0.051	0.540
HRM ^s	0.488	0.078	0.577	0.486	0.069	0.555	0.477	0.081	0.553
HRM	0.449	0.010	0.465	0.466	0.011	0.478	0.465	0.015	0.482

Background of OOD Generalization problem	Limitations of Invariant Learning	Heterogeneous Risk Minimization(HRM)	Experiment Results	
			0000000	

Selection Bias Results

We visualize the differences between environments using Task2Vec⁴ as follows:



- The quality of \mathcal{E}_{learn} becomes better.
- The quality of \mathcal{E}_{learn} is even better than the ground truth environments.

Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen

⁴Achille, A., Lam, M., Tewari, R., Ravichandran, A., Maji, S., Fowlkes, C. C., Soatto, S., and Perona, P. Task2vec: Task embedding for meta-learning.

Background of OOD Generalization problem 0000		Experiment Results 00000●0

Notes

Due to time limits, please refer to our paper

https://arxiv.org/pdf/2105.03818.pdf

for:

- The details of HRM framework
- The theoretical analysis of the role of environments in invariant learning
- The theoretical analysis of the mutual promotion
- More experiments, including selection bias, anti-causal effect and real data.

Background of OOD Generalization problem 0000		Experiment Results 000000●

- 1. Sinha, A., Namkoong, H., and Duchi, J. Certifying some distributional robustness with principled adversarial training. International Conference on Learning Representations, 2018.
- 2. Creager, E., Jacobsen, J.-H., and Zemel, R. Environment inference for invariant learning. In ICML Workshop on Uncertainty and Robustness, 2020.
- 3. Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez- Paz, D. Invariant risk minimization. arXiv preprint arXiv:1907.02893, 2019.

References