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1. We propose a proactive way of doing RL

2. We introduce skip-connections into MDPs
– use of action repetition
– faster propagation of rewards

3. We propose a novel algorithm using skip-connections
– learn what action to take & when to make a new decision
– condition when on what

4. We evaluate our approach with in a variety of settings
– tabular Q-learning on Gridworlds
– DQN on featurized environments
– DDPG on featurized environments
– DQN with image states on Atari environments

In a Nutshell
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Motivation

r =  0r =  1
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Motivation

r =  0r = -1
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Optimal Policies

● Optimal policies will only cross the blue shaded area.
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Optimal Policies: When do we need to act?

● Example trajectory of an optimal policy requiring # Steps:         16
# Decisions: 16
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Optimal Policies: When do we need to act?

● Simplified trajectory of an optimal policy requiring # Steps:        16
# Decisions:   5
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Optimal Policies: When do we need to act?

● Simplified trajectory of an optimal policy requiring # Steps:        16
# Decisions:   3
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Optimal Policies: When do we need to act?

● Proactive decision making requires ~80% fewer decisions
● Much simpler policies
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• Action repetition induces skips
• Information can be propagated faster along skips
• With large skips, multiple smaller skips can be observed

Skip MDPs
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1. Use standard agent (e.g. Q-learning) to determine the 
behaviour given the state

2. Condition skips on the chosen action

3. Play action     for the next     steps

• Behaviour policy can be learned with vanilla agents
• The skip Q-function can be learned using n-step updates

Flat Hierarchy
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Experimental Evaluation: Tabular Q-learning

• Comparison of vanilla and TempoRL Q-learning
on the example gridworld

• TempoRL learns well performing policies faster



Biedenkapp, Rajan, Hutter, Lindauer TempoRL 13

Experimental Evaluation: Tabular Q-learning

• Comparison of vanilla and TempoRL Q-learning
on the example gridworld

• TempoRL learns well performing policies faster requiring 
far fewer decisions by learning when to switch actions
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Depending on the state modality we consider different 
architectures 

Moving to Deep RL
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Evaluation on Atari
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• Further results in the paper
– TempoRL DDPG
– Influence of TempoRL 

hyperparameters
– Improved exploration through 

TempoRL

• Future Work
– distributional TempoRL
– changing TempoRL exploration

Looking forward to 
meeting you at the poster!
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• TempoRL allows for
– better exploration
– faster learning
– better explainability

Code, learned policies, videos of rollotus and 
learning curves are available at

Wrap-Up

https://github.com/automl/TempoRL

