
State Entropy Maximization with Random 
Encoders for Efficient Exploration

Younggyo Seo*, Lili Chen*, Jinwoo Shin, Honglak Lee, Pieter Abbeel, Kimin Lee

*Equal Contribution



Exploration remains a challenge for deep RL
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Exploration remains a challenge for deep RL

● A promising, principled approach: encourage uniform (i.e., maximum entropy) 
state space coverage [Lee’19; Hazan’19]

● In practice: estimate state entropy by measuring distances between states 
and their k-nearest neighbors [Mutti’21]
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How to extend this to high-dimensional observations?

Measuring distance between images is non-trivial (cannot directly use pixel space)

[Badia’20] Badia, Adrià Puigdomènech, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven Kapturowski, Olivier Tieleman et al. "Never Give Up: Learning Directed Exploration 
Strategies." In ICLR, 2020.
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How to extend this to high-dimensional observations?

Measuring distance between images is non-trivial (cannot directly use pixel space)

● Prior approaches: k-NN measured in low-dimensional learned latent space
○ Dynamics learning [Tao’20]
○ Inverse dynamics prediction [Badia’20]
○ Contrastive learning [Liu’21]

● But optimizing these auxiliary losses adds complexity (e.g., hyperparameter 
tuning), instability, and computational overhead
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Random Encoders for Efficient Exploration (RE3)

Core idea: intrinsic reward via k-NN state entropy estimator in the representation 
space of a randomly initialized encoder, fixed throughout training



Random Encoders for Efficient Exploration (RE3)

Core idea: intrinsic reward via k-NN state entropy estimator in the representation 
space of a randomly initialized encoder, fixed throughout training



Random Encoders for Efficient Exploration (RE3)

Core idea: intrinsic reward via k-NN state entropy estimator in the representation 
space of a randomly initialized encoder, fixed throughout training



Random Encoders for Efficient Exploration (RE3)

Core idea: intrinsic reward via k-NN state entropy estimator in the representation 
space of a randomly initialized encoder, fixed throughout training



Random Encoders for Efficient Exploration (RE3)

Core idea: intrinsic reward via k-NN state entropy estimator in the representation 
space of a randomly initialized encoder, fixed throughout training

Hypothesis: the representation space of a random encoder effectively captures 
information about similarity between states



RE3 can be combined with a variety of RL algorithms

We improve the sample-efficiency of both model-free (RAD [Laskin’20]) and 
model-based (Dreamer [Hafner’20]) algorithms on DeepMind Control Suite [Tassa’18]
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RE3 outperforms other exploration methods
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RE3 is also effective for reward-free pre-training

Pre-training with the RE3 objective encourages diverse behaviors
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RE3 is also effective for reward-free pre-training

Pre-training with the RE3 objective encourages diverse behaviors 
which are useful for downstream tasks
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RE3 can also be combined with on-policy RL algorithms

RE3 improves sample-efficiency of A2C [Mnih’16] and outperforms other 
exploration methods in Minigrid environments [Chevalier-Boisvert’18]

[Mnih’16] Mnih, Volodymyr, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. "Asynchronous methods for deep reinforcement 
learning." In ICML, 2016.
[Chevalier-Boisvert’18] Chevalier-Boisvert, M., Willems, L., and Pal, S. Minimalistic gridworld environment for openai gym. https://github.com/maximecb/gym-minigrid, 2018
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RE3 improves learning in hard exploration Atari games

Montezuma’s Revenge Normalized score over 6 games

[Hessel’18] Hessel, Matteo, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. "Rainbow: Combining 
improvements in deep reinforcement learning." In AAAI, 2018.
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