Marginalized Stochastic Natural Gradients for Black-Box Variational Inference

Geng Ji, Debora Sujono, Erik Sudderth

ICML | 2021

Thirty-eighth International Conference on Machine Learning

Introduction

We propose a black-box variational inference algorithm for discrete-variable models

- Black-box: Integration with probabilistic programming languages (PPL), no manual derivations
- Discrete models: Not reparameterizable, existing methods are either biased or have high variance
- Examples: Binary belief networks for image data (e.g. MNIST digits) or text documents, relational models for network data (e.g. country relations, NeurIPS co-authors)

Variational Inference (VI)

• Given a model with discrete latent variables z and observations x, VI seeks approximate posterior q(z) by maximizing the *evidence lower bound* (ELBO):

$$\mathcal{L}(x; q) = \mathbb{E}_{q(z)}[\log p(z, x) - \log q(z)]$$

Assume mean-field variational distribution: $q(z) = \prod_i q(z_i)$

Variational Inference (VI)

• Given a model with discrete latent variables z and observations x, VI seeks approximate posterior q(z) by maximizing the *evidence lower bound* (ELBO):

$$\mathcal{L}(x; q) = \mathbb{E}_{q(z)}[\log p(z, x) - \log q(z)]$$

Assume mean-field variational distribution: $q(z) = \prod_i q(z_i)$

• Suppose z_i is binary and $q(z_i)$ is Bernoulli parameterized by logit:

$$\tau_i = \log \frac{q(z_i = 1)}{q(z_i = 0)}$$

Generalization to categorical variables in paper

Limitations of Existing VI Algorithms

Coordinate ascent variational inference (CAVI)

$$\tau_i = \mathbb{E}_{q(z_{-i})} \left[\log \frac{p(z_i = 1 | z_{-i}, x)}{p(z_i = 0 | z_{-i}, x)} \right]$$

- Intractable for complex discrete models
- Guaranteed to converge only when updated **sequentially**
- Auxiliary-variable methods: looser bounds (local optima), handcrafted derivations (not black-box)

Limitations of Existing VI Algorithms

Coordinate ascent variational inference (CAVI)

$$\tau_i = \mathbb{E}_{q(z_{-i})} \left[\log \frac{p(z_i = 1 | z_{-i}, x)}{p(z_i = 0 | z_{-i}, x)} \right]$$

- Intractable for complex discrete models
- Guaranteed to converge only when updated **sequentially**
- Auxiliary-variable methods: looser bounds (local optima), handcrafted derivations (not black-box)
- Score-function estimator (REINFORCE)

$$\frac{\partial \mathcal{L}}{\partial \tau_i} \approx \frac{1}{M} \sum_{m=1}^{M} \frac{\partial \log q(z_i)}{\partial \tau_i} \bigg|_{z_i^{(m)}} \cdot \left(\log p\left(z_i^{(m)} \middle| z_{-i}^{(m)}, x\right) - \log q(z_i^{(m)}) \right)$$

• Estimates have high variance

Limitations of Existing VI Algorithms

Coordinate ascent variational inference (CAVI)

$$\tau_i = \mathbb{E}_{q(z_{-i})} \left[\log \frac{p(z_i = 1 | z_{-i}, x)}{p(z_i = 0 | z_{-i}, x)} \right]$$

- Intractable for complex discrete models
- Guaranteed to converge only when updated **sequentially**
- Auxiliary-variable methods: looser bounds (local optima), handcrafted derivations (not black-box)
- Score-function estimator (REINFORCE)

$$\frac{\partial \mathcal{L}}{\partial \tau_i} \approx \frac{1}{M} \sum_{m=1}^{M} \frac{\partial \log q(z_i)}{\partial \tau_i} \bigg|_{z_i^{(m)}} \cdot \left(\log p\left(z_i^{(m)} \middle| z_{-i}^{(m)}, x\right) - \log q(z_i^{(m)}) \right)$$

- Estimates have high variance
- Gumbel-softmax relaxations (CONCRETE)
 - Estimates are biased
 - Require gradients of model log-probability

REINFORCE

$$\frac{\partial \mathcal{L}}{\partial \tau_i} = \mathbb{E}_{q(z)} \left[\frac{\partial \log q(z_i)}{\partial \tau_i} (\log p(z_i | z_{-i}, x) - \log q(z_i)) \right]$$

✓ Unbiased ✓ Black-box ✓ No gradients of model log-probability

REINFORCE → Natural Gradient

$$F^{-1}(\tau_i) \frac{\partial \mathcal{L}}{\partial \tau_i} = F^{-1}(\tau_i) \frac{\partial \mu_i}{\partial \tau_i} \frac{\partial \mathcal{L}}{\partial \mu_i} = \mathbb{E}_{q(z)} \left[\frac{\partial \log q(z_i)}{\partial \mu_i} (\log p(z_i | z_{-i}, x) - \log q(z_i)) \right]$$

✓ Unbiased ✓ Black-box ✓ No gradients of model log-probability

REINFORCE → Natural Gradient → Marginalization

$$F^{-1}(\tau_{i}) \frac{\partial \mathcal{L}}{\partial \tau_{i}} = F^{-1}(\tau_{i}) \frac{\partial \mu_{i}}{\partial \tau_{i}} \frac{\partial \mathcal{L}}{\partial \mu_{i}} = \mathbb{E}_{q(z)} \left[\frac{\partial \log q(z_{i})}{\partial \mu_{i}} (\log p(z_{i}|z_{-i}, x) - \log q(z_{i})) \right]$$

$$= \sum_{z_{i}} q(z_{i}) \frac{\partial \log q(z_{i})}{\partial \mu_{i}} \mathbb{E}_{q(z_{-i})} [\log p(z_{i}|z_{-i}, x) - \log q(z_{i})]$$

✓ Unbiased ✓ Black-box ✓ No gradients of model log-probability ✓ Low variance

REINFORCE → Natural Gradient → Marginalization

Weighted average
$$\tau_{i}^{\text{new}} = \alpha \frac{1}{M} \sum_{m=1}^{M} \log \frac{p(z_{i} = 1 | z_{-i}^{(m)}, x)}{p(z_{i} = 0 | z_{-i}^{(m)}, x)} + (1 - \alpha)\tau_{i}$$

Monte Carlo approximation of CAVI update

✓ Unbiased ✓ Black-box ✓ No gradients of model log-probability
 ✓ Low variance ✓ Parallelizable

Experiments: Toy Data

Noisy-OR model

• Yellow star indicates global maximum

Experiments: Toy Data

Noisy-OR model

Yellow star indicates global maximum

- Red area: ELBO likely to increase Blue area: ELBO likely to decrease
- REINFORCE is more likely to *decrease* ELBO in blue region near maximum, and shows sensitivity to step-size
- MSNG has promising red area near the yellow star to "attract" variational parameters toward global maximum

Experiments: Image and Network Data

Summary

Classic CAVI updates are not tractable for general discrete models.

Our Marginalized Stochastic Natural Gradients (MSNG) have attractive properties:

	CAVI (AUX)	REINFORCE	CONCRETE	MSNG
Unbiased optimization of discrete ELBO	X	✓	X	✓
Black-box variational inference	X	\checkmark	✓	✓
No model log-likelihood derivatives	✓	✓	X	✓
Low variance	✓	X	✓	✓
Parallelizable	X	✓	✓	✓

See our ICML 2021 paper: Categorical variable updates, integration with Pyro PPL, additional stochastic VI baselines, applications to models of text topics & crowd-sourcing