Safe Reinforcement Learning with Linear Function Approximation

Sanae Amani ¹ Christos Thrampoulidis ² Lin F. Yang¹

¹ University of California, Los Angeles

²University of British Columbia, Vancouver

July 2021

Table of Contents

Problem Formulation

SLUCB-QVI and RSLUCB-QVI

• Finite horizon MDP: $M = (S, A, H, \mathbb{P}, r, c)$, S: known state set, A: known action set, H: known episode's length, $\mathbb{P} = {\mathbb{P}_h}_{h=1}^H$: unknown transition probabilities, $r = {r_h}_{h=1}^H$: unknown reward functions, and $c = {c_h}_{h=1}^H$: unknown cost functions.

- Finite horizon MDP: $M = (S, A, H, \mathbb{P}, r, c)$, S: known state set, A: known action set, H: known episode's length, $\mathbb{P} = {\mathbb{P}_h}_{h=1}^H$: unknown transition probabilities, $r = {r_h}_{h=1}^H$: unknown reward functions, and $c = {c_h}_{h=1}^H$: unknown cost functions.
- Safety Constraint: When being in state s_h^k , at episode k and time-step $h \in [H]$, the agent must select a safe policy π_h^k such that
 - if π_h^k is deterministic:

$$c_h(s_h^k, \pi_h^k(s_h^k)) \leq \tau.$$

- Finite horizon MDP: $M = (S, A, H, \mathbb{P}, r, c)$, S: known state set, A: known action set, H: known episode's length, $\mathbb{P} = {\mathbb{P}_h}_{h=1}^H$: unknown transition probabilities, $r = {r_h}_{h=1}^H$: unknown reward functions, and $c = {c_h}_{h=1}^H$: unknown cost functions.
- Safety Constraint: When being in state s_h^k , at episode k and time-step $h \in [H]$, the agent must select a safe policy π_h^k such that
 - if π_h^k is deterministic:

$$c_h(s_h^k, \pi_h^k(s_h^k)) \leq \tau.$$

• if π_h^k is randomized:

$$\mathbb{E}_{a \sim \pi_h^k(s_h^k)} c_h(s_h^k, a) \leq \tau.$$

Goal

$$V_h^*(s) = \sup_{\pi \in \Pi^{ ext{safe}}} V_h^\pi(s), \,\, orall (s,h) \in \mathcal{S} imes [H]$$

$$R_{\mathcal{K}} := \sum_{k=1}^{\mathcal{K}} V_1^*(s_1^k) - V_1^{\pi^k}(s_1^k).$$

The agent's goal is to keep R_K as small as possible, while π^k are safe for all $k \in [K]$ with high probability.

Key Assumptions

• M is a linear MDP with feature map $\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$, if for any $h \in [H]$, there exist d unknown measures $\mu_h^* := [\mu_h^{*(1)}, \dots, \mu_h^{*(d)}]^{\top}$ over \mathcal{S} , and unknown vectors $\theta_h^*, \gamma_h^* \in \mathbb{R}^d$ such that $\mathbb{P}_h(.|s,a) = \langle \mu_h^*(.), \phi(s,a) \rangle$, $r_h(s,a) = \langle \theta_h^*, \phi(s,a) \rangle$, and $c_h(s,a) = \langle \gamma_h^*, \phi(s,a) \rangle$.

Key Assumptions

- M is a linear MDP with feature map $\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$, if for any $h \in [H]$, there exist d unknown measures $\mu_h^* := [\mu_h^{*(1)}, \dots, \mu_h^{*(d)}]^{\top}$ over \mathcal{S} , and unknown vectors $\theta_h^*, \gamma_h^* \in \mathbb{R}^d$ such that $\mathbb{P}_h(.|s,a) = \langle \mu_h^*(.), \phi(s,a) \rangle$, $r_h(s,a) = \langle \theta_h^*, \phi(s,a) \rangle$, and $c_h(s,a) = \langle \gamma_h^*, \phi(s,a) \rangle$.
- For all $s \in \mathcal{S}$, there exists a known safe action $a_0(s)$ with known safety measure $\tau_h(s) := \langle \phi(s, a_0(s)), \gamma_h^* \rangle < \tau$ for all $h \in [H]$.

Table of Contents

Problem Formulation

2 SLUCB-QVI and RSLUCB-QVI

SLUCB-QVI and RSLUCB-QVI

• Algorithms for deterministic and randomized policy selection.

SLUCB-QVI and RSLUCB-QVI

- Algorithms for deterministic and randomized policy selection.
- They run LSVI to compute estimated Q functions and inner approximation safe policy set.

SLUCB-QVI and RSLUCB-QVI

- Algorithms for deterministic and randomized policy selection.
- They run LSVI to compute estimated Q functions and inner approximation safe policy set.
- They achieve a $\tilde{\mathcal{O}}\left(\kappa\sqrt{d^3H^3T}\right)$ regret, nearly matching that of state-of-the-art unsafe algorithms, where

$$\kappa := \argmax_{\textbf{h},\textbf{s}} \frac{2\textbf{H}}{\tau - \tau_{\textbf{h}}(\textbf{s})} + 1$$

is a constant characterizing the safety constraints.